
© 2022 Ran Tao



OPTIMIZING CROP MANAGEMENT WITH REINFORCEMENT LEARNING,
IMITATION LEARNING, AND CROP SIMULATIONS

BY

RAN TAO

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Graduate College of the
University of Illinois Urbana-Champaign, 2022

Urbana, Illinois

Adviser:

Professor Naira Hovakimyan



Abstract

Crop management, including nitrogen (N) fertilization and irrigation management, has a significant impact

on crop yield, economic profit, and the environment. Although management guidelines exist, finding the

optimal management practices is challenging given a specific planting environment and a crop. This thesis

presents an intelligent crop management system that optimizes N fertilization and irrigation simultaneously

via reinforcement learning (RL), imitation learning (IL), and crop simulations using the Decision Support

System for Agrotechnology Transfer (DSSAT). The thesis formulates the crop management problem as an

RL problem, and uses RL algorithms to train management policies that require all state variables from the

simulator as observations (denoted as full observation). We then invoke IL to train management policies

that only need a limited amount of state variables that can be easily obtained or measured in the real world

(denoted as partial observation) by mimicking the actions of the RL-trained policies under full observation.

This thesis includes three case studies in total. The first one focuses on optimizing N fertilization under

full observation only. The second one optimizes N fertilization and irrigation simultaneously under full

observation, and the last one considers N fertilization and irrigation under partial observation. For the case

study focusing on N fertilization, experiments are conducted in simulations on the maize crop in Iowa, where

farmers usually do not irrigate, and N management policies are trained with two deep RL algorithms, deep

Q-network (DQN) and soft actor-critic (SAC). For the case studies on optimizing N fertilization and irrigation

simultaneously, we conduct experiments in simulations on maize crop in Florida, where both irrigation and

fertilization are critical for the crop growth. Deep Q-network is applied in the RL-based training for finding

management policies under full observation, and the RL-trained policies are then used as the expert to train

management policies under partial observation with IL. For each case study, we compare the trained policies

with baseline methods, which follow a maize production guideline in the corresponding location. The trained

policies under both full and partial observations achieve better outcomes than the baseline methods, resulting

in a higher profit or yield with less management input or a smaller environmental impact. Moreover, the

partial-observation management policies are directly deployable in the real world as they use readily available

information, which paves the way for validating the performance of the framework with field tests.
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Chapter 1

Introduction

The agricultural industry worldwide is facing signi�cant challenges. It needs to produce food for a population

expected to reach 9.6 billion by 2050, and simultaneously reduce environmental impacts, including ecosystem

degradation and high greenhouse gas emissions [1]. There are plenty of management factors in
uencing crop

yield and environmental impact, among which nitrogen (N) fertilization and irrigation are two of the most

signi�cant ones [2]. Based on empirical experience and existing agricultural studies, local best management

practices for N fertilization and irrigation exist among farmers. However, it remains to be seen whether

the current management practices are optimal and whether these strategies perform well in the presence

of changes in climate, yield price, and management cost. Thus, new methods are urgently needed to help

farmers build cost-e�ective and readily deployable systems [3] that provide optimal management policies given

a particular condition (including climate, yield price, management cost, etc.) and a target (e.g., maximum

economic pro�t or minimal environmental impact).

Reinforcement learning (RL) has been drawing signi�cant interest in the machine learning and arti�cial

intelligence communities in the last two decades [4]. With RL, the agents learn to perform a task from the

outcomes of their own decisions rather than from the decisions of the experts, which makes RL useful in

complex problems where �nding reliable expert training information is time-consuming, di�cult, or even

impossible [5]. Sequential decision making (SDM) describes a scenario where consecutive observations of a

process are made before a �nal decision. Considering this, we can view the crop management problem as

an SDM problem, where across the growth cycle of the crop, farmers need to obtain information related to

the weather, soil, and crop for a period of time in order to make the decision on the management practices,

including the amount and time of fertilization and irrigation. Modern reinforcement learning (RL) methods,

represented by deep RL, have achieved remarkable or superhuman performance on a variety of tasks involving

SDM such as gaming [6], [7], data center cooling [8], marketing and advertising [9], and robotic control

[10]{[12]. As a result, we expect that RL has the potential for optimizing agricultural management, improving

crop yield while minimizing environmental impacts. Since the RL agent learns from the consequences of

their decisions, plentiful interactions between the RL agent and the environment are required for policy

training. As real-world farm experiments are laborious, time-consuming, and cost-ine�cient, it is impossible

to implement �eld trial-based methods [13] for the training of the management policies, which necessitates

the use of agricultural simulation models, including APSIM and DSSAT, for RL-based training [14]. For

currently available crop models, the users need to pre-de�ne the management practice before the start of

a simulation. However, RL aims to �nd optimal policies that decide the management practices in (near)
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real-time according to the current weather, plant, and soil conditions. Given this concern, e�orts have been

made to enable real-time communication between an RL agent and the crop environment during a simulation.

Figure 1.1: Framework of the intelligent crop management system using RL and IL. We �rst use RL to train
management policies under full observation. Then, the RL-trained policies are used as the expert to train
policies under partial observation with IL.

This thesis presents an intelligent crop management system, depicted in Figure 1.1, that generates

deployableand adaptablemanagement policies based on RL, imitation learning (IL), and crop simulations

via DSSAT. In particular, we leverage Decision Support System for Agrotechnology Transfer (DSSAT), a

widely used tool for crop modeling and simulation [15], [16], and the Gym-DSSAT interface [17] that allows

users to read the simulated crop and soil conditions and apply management practices on a daily basis. As a

demonstration of the use of the presented framework, we conduct three case studies in simulation in total.

The �rst study focuses on the RL-based training under full observation for the maize crop in Iowa, US, where

we train N management policies that require all state variables from the simulator as observations with

two deep RL algorithms, namely deep Q-network (DQN) and soft actor-critic (SAC). Only N fertilization

is included since irrigation is usually not required for maize in Iowa. In the second and third case studies,

we train N fertilization and irrigation management policies simultaneously for the maize crop in Florida,

US, where both fertilization and irrigation have a signi�cant impact on crop growth. The second case study

focuses on RL-based training under full observation and the third one studies IL-based training under partial

observation, where the agent only receives state variables that can be easily obtained or measured by farmers

in the real world. In particular, DQN is leveraged to train policies under full observation in the second case

study, and then the RL-trained policies are used in the third case study as the experts to train policies under

partial observation using IL. We further evaluate the performance of the trained policies in comparison with

standard practices to validate the bene�t of the proposed framework.

Compared to early work on RL-based crop management [18], [19], our framework, which leverages deep

RL, can handle much larger state and action spaces. Compared to recent work on deep RL-based agricultural

management [20], [21], the crop model adopted in our framework, i.e., DSSAT, is much more widely used

globally; additionally, our experimental study is signi�cantly more comprehensive, which involves two di�erent
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deep RL algorithms and two geographic locations. Additionally, in the second case study, we investigate the

RL-based policy training with di�erent reward functions that represent di�erent tradeo�s among crop yield,

N fertilizer use, water use, and environmental impact during the crop growth cycle. We also analyze the

adaptation of the trained policies when a di�erent target, represented by the reward function, is provided.

Most importantly, we leverage IL as a new tool to �nd the optimal management policies that require only

state variables that can be easily obtained or measured in the real world. As a result, the path to deployment

of our intelligent crop management system is paved, and �eld tests can be conducted to prove the e�ectiveness

of our trained policies.

The thesis is organized as follows. In Chapter 2, we present some work related to the topic of applying RL

and IL for �nding optimal crop management policies. Chapter 3 discusses the details of the method we used

for the application of RL and IL. Chapters 4-6 present the results and analysis of three case studies from

the proposed framework. Chapter 7 discusses the path to deployment of our framework and some potential

problems regarding the sim-to-real issue. Finally, Chapter 8 concludes the thesis and presents some possible

future work.
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Chapter 2

Related Work

2.1 Reinforcement Learning in Crop Management

Reinforcement learning, as a sub-�eld of machine learning, aims to solve sequential decision making (SDM)

problems by letting an agent directly interact with the environment and learn from trial and error [22]. By

viewing crop management as an SDM problem, to be more speci�c, as a Markov decision process (MDP)

problem, researchers have applied RL to �nd the optimal crop management policies from simulators. As

a pioneering work, [18] proposed to use a simple RL method (namely, R-learning) and crop simulations to

optimize management of wheat crops in France. [19] studied the use of SARSA(� ), an on-policy RL method,

and crop simulations to optimize the irrigation for the maize crop in Texas, US. However, the state and action

spaces in [18], [19] were quite small due to the curse of dimensionality from which early RL methods su�ered.

For instance, the state space in [19] has only one state, i.e., total soil water (TSW) level. In contrast, modern

RL methods, represented by deep RL, are able to handle extremely large state and action spaces due to the

use of deep neural networks (DNNs) (to approximate the value functions or policies), and have achieved

remarkable or superhuman performance on a variety of high-dimensional problems. Deep RL based on the

proximal policy optimization (PPO) algorithm was used in [20] to optimize the fertilizer management for

the wheat crop. Additionally, [21] studied the use of PPO to optimize the irrigation management for russet

potatoes. However, the study is quite coarse and the results are not promising. For instance, in terms of

results, [21] included only a simple learning curve showing the normalized reward, while the variables farmers

mostly care such as yield, management cost, and nitrate leaching were not included. Additionally, the trained

policy performed much worse than a simple policy which applies a constant amount of water.

2.2 Crop Models for Reinforcement Learning

Crop models can simulate crop growth in response to soil, water, nutrient, and weather dynamics. They are

playing increasingly important roles in the development of sustainable agricultural management, because

�eld and farm experiments require large amounts of resources and may still not provide su�cient information

in space and time to identify appropriate and e�ective management practices [23]. The development of crop

models dates back to 1950s. In the past seven decades, many crop models of varying complexities have been

developed by di�erent groups, which include Agricultural Production Systems Simulator (APSIM), CERES

(now contained in the DSSAT Suite of crop suite), CROPSYST, EPIC, WOFOST, and COUP. See the survey
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thesis [23] and a comparison of di�erent crop models for yield response prediction [24]. Among the existing

crop models, the ones that are extensively used globally are APSIM and DSSAT, which are still constantly

evolving and currently open-source to facilitate community-based development.

Most of the existing crop models need the management practices to be pre-speci�ed before the start

of a simulation, while RL-based training of management policies requires the management practices to be

determined according to the soil, plan and weather conditions on a daily or weekly basis during the simulation.

In light of this, the authors of [20] developed the CropGym environment for training of N management policies,

which provides an interface to Open AI Gym [25], a widely used toolkit for RL research, and enables an RL

agent to interact with the crop environment weekly. However, CropGym is based on the LINTUL-3 model

[26] for the wheat crop, which has limited use. In a similar spirit, [21] presented another crop environment

with the Open AI Gym interface for the russet potato based on the SIMPLE crop model [27], which, again,

has limited use, potentially because the model is over-simpli�ed. Recently, a Gym-DSSAT environment for

the maize crop, which is based on the widely used DSSAT suite of crop models and provides a Gym interface,

was developed [17] and enables an RL agent to interact with the environment on a daily basis. However,

there have been no results on the use of Gym-DSSAT for training crop management policies up to now.

2.3 Imitation Learning for Policy Training

IL seeks to learn a policy by imitating the behavior of an expert and it has been widely applied in the

�eld of robotics, including autonomous aerial and ground vehicles. The authors of [28] applied IL to learn

autonomous driving policies using an expert driver as the learning target. The authors of [29] alternatively

used the model predictive controller (MPC) as the expert to train a control policy under partial observation.

Both of these works indicate the promising ability of IL in learning good policies given an expert. [29] further

demonstrates the ability of IL in learning good policies under partial observation, which is usually di�cult

to achieve with standard RL due to the less available information compared to the full observation case.

However, to the best of our knowledge, there has been no reported work on applying IL for crop management.

Thus, from [29], we adopt the idea of using IL to solve the problem of partial observation given an expert

policy under full observation, which is summarized as the IL-based learning in the proposed framework in

Figure 1.1.

5



Chapter 3

Methods

We now present technical details for the framework based on deep RL, IL, and crop simulations depicted in

Figure 1.1.

3.1 Markov Decision Process Problem Formulation

The crop management is formulated as a �nite Markov decision processes (MDP) here. In this formulation,

a decision-making agent continuously interacts with the environment. On each dayt, the agent receives

the state of the environment, st , and chooses the actionat from the action spaceA based on some policy

� (st ; � t ), where � t is the parameter of the policy at current day. The state st contains information related to

the weather, plant, and soil at the given day from the simulator.

For the �rst case study of maize in Iowa, action at only consists of the amount of N fertilizer to be applied

for that day, N t . The reward function r t (st ; at ) at day t is set as:

r t (st ; at )=

(
w1Y � w2N t � w3N l;t � w4Pt if harvest at t,

� w2at � w3N l;t � w4Pt otherwise,
(3.1)

where w1; w2; w3; w4 are four weight factors to be determined,N l;t is the nitrate leaching at day t, Y is the

crop yield at the harvest date, and Pt is the additional penalty on large total amount of nitrogen applied. In

particular, the penalty Pt is designed as:

Pt =

( P t
k=1 ak � threshold if at 6= 0 ;

0 if at = 0 ;
(3.2)

where the threshold represents the allowable total amount of nitrogen inputs to be decided. The inclusion of

Pt in the reward function of the �rst case study is optional since we already havew2 in the reward function

to penalize the use of fertilizer. We includePt to help the training converge faster. Also, the total amount of

N fertilizer decided from the trained policy will be smaller than the threshold in order to achieve maximum

cumulative reward, which indicates that Pt will not in
uence the evaluation of the trained policies. It may be

worth mentioning that nitrate leaching occurs when nitrate is washed out of the root zone by heavy rainfall

or irrigation. Leaching is undesirable because it leads to the waste of the fertilizers, and more importantly,

causes environmental problems such as eutrophication of watercourses and soil degradation. Thus, we include
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a penalty on nitrate leaching in the reward function.

For the second and third case studies of maize in Florida,at now consists of bothN t , the amount of N

fertilizer input, and Wt , the amount of irrigation water to be applied for day t. Similarly, given st and at , the

reward function r t (st ; at ) for these two case studies is de�ned as:

r t (st ; at )=

(
w1Y � w2N t � w3Wt � w4N l;t if harvest at t,

� w2N t � w3Wt � w4N l;t otherwise,
(3.3)

where w1; w2; w3; w4; Y; Nl;t are four weight factors to be determined, yield at harvest, and the amount of

nitrate leaching at given day respectively.

Given the state st and a design of the reward function represented byw1; w2; w3; w4, the goal of the agent

is to �nd the optimal policy � (st ; � t ) which renders at and maximizes the future discounted return, which is

de�ned as:

Rt =
TX

� = t


 � � t r � ; (3.4)

which represents the sum of the reward at current day from applyingat , i.e., r t , and discounted future rewards

with a discount factor 
 following this policy.

3.2 Training Management Policies under Full Observation using

Deep RL

For solving the formulated MDP problem, we leverage the recently proposed deep RL algorithms, which have

achieved remarkable performance on a variety of tasks [6]{[12]. We choose deep Q-network (DQN) [6] and

soft actor-critic (SAC) [30] for the experimental study, but other deep RL algorithms can also be applied.

Due to the nature of di�erent RL algorithms, the action space used in DQN is discrete, while the action space

used in SAC is continuous.

3.2.1 Policy Training with DQN

With DQN, a deep neural network is used to represent the action-value function, also known as the Q function

[6], and thus we call the network as a Q-network. The Q function of a policy� is de�ned as:

Q� (s; a) = E[Rt jst = s; at = a; � ]; (3.5)

which measures the expected future discounted return obtained from states by taking action of a and

following policy � afterwards. We keep updating the parameters of the Q-network to �nd the optimal Q

function, Q?(s; a), which represents the optimal return that can be gained from states by taking action a

and following the optimal policy afterwards. Given an optimal Q function, Q?, and a state st , a greedy policy

de�ned as:

a?
t = max

a2A
Q?(st ; a) (3.6)
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is used by the agent to determine the optimal action. Since the Q function determines the policy of the

agent, training of the Q-network is same as the training of the policy. The Q-network parameter at iteration

i , denoted by � i , is updated by minimizing the loss function:

L i (� i ) , E
(s;a;r;s 0)

•
r + 
 max

a02A
Q(s0; a0; � �

i ) � Q(s; a; � i )
˜
; (3.7)

where s; a; r; s0 and 
 denote current state, current action, current reward of s and a, next state, and discount

factor respectively, and � �
i denotes the parameters of a previously de�ned target network. The tuples

(s; a; r; s0) are randomly chosen from the replay bu�er, which is a memory base of previously generated tuples

(s; a; r; s0) during training.

3.2.2 Policy Training with SAC

SAC is a policy-gradient deep RL algorithm that represents the state of the art among model-free RL

algorithms in terms of sample e�ciency and stability with respect to the hyperparameters [30]. Besides the

expected future discounted rewards, SAC introduces the expected entropy to favor stochastic policies, which

leads to a cost functionL de�ned as:

L , �
TX

t =0

E(st ;a t ) � p� [r t (st ; at ) + � H (� (�jst ))] ; (3.8)

where p denotes the state-action marginals of the trajectory distribution, H determines the entropy for the

evaluation of randomness given the statest , and r t (st ; at ) is the immediate reward at time t given state st

and action at . The temperature parameter � decides the trade-o� between the entropy term and rewards.

3.3 Crop Simulations and Daily Interactions with DSSAT and

Gym-DSSAT

DSSAT has been used for various crop simulations worldwide in the last 30 years [15]. However, limited

interactions can be reached during the running period of simulation, leading to a possible delay of adjustment

for management decisions. Recently, Gym-DSSAT [17] has been developed to bridge the communication

gap between the simulation environment and daily management decisions. This communication pipeline

enables RL researchers to manipulate DSSAT like Open AI Gym in machine learning and robotics [6], [7].

In Gym-DSSAT, the environment is de�ned at a �eld scale with a time step corresponding to one day. An

episode typically covers about 160 days from planting to harvest, and its state is automatically set as "done"

at crop maturity. Weather is randomly generated via WGEN's[31] built-in stochastic weather generator and

can be �xed depending on simulation purposes.

With Gym-DSSAT, millions of daily interactions between an RL agent and the simulated crop environment

can be achieved in a few minutes, and used for training the management policies.

8



3.4 Training Management Policies under Partial Observation using

Imitation Learning

Imitation learning aims to train the agent to perform a task by mimicking the behavior of an expert [32]. As

opposed to learning from scratch by trial-and-error in RL [33], with IL the agent learns a mapping between the

observations and desired actions determined by the expert, which simpli�es the learning process of complex

problems. For the crop management problem, not all state variables from the simulator can be achieved or

measured by farmers. Thus, for deployment in the real world, the agent should only utilize state variables

that are accessible to farmers. Given any states, denote so as the observable state which contains variables

from s that are observable or measurable by farmers. Under partial observation, on each dayt, the agent

receivesso
t . The goal of the agent is to learn an optimal policy � (so

t ; � ) that generates an actionao
t that is

same asat , where at is the action determined from the expert given an observation ofst . Behavior cloning,

the simplest form of IL, can be applied to train the policy under partial observation as follows. We �rst

collect demonstrations, state-action pairs (s; a), from the expert policy and store them into a dataset D.

Then, the policy network of the agent is updated by minimizing the loss function:

L (� ) =
X

(s;a )2D

k� (so; � ) � ak: (3.9)

The loss function represents the di�erence between the output of the policy network withso as the input,

and the action a determined by the expert policy given s.
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Chapter 4

Optimizing N Fertilization under Full

Observation

In this chapter, we present the experiment setup and results for the case study of optimizing N fertilization

under full observation for maize crop in Iowa, where farmers usually do not irrigate for maize. We leverage

both DQN and SAC to train the RL agent, and test the performance of all the trained policies in simulation

and compare their results with baseline policies proposed in [34].

It is worth mentioning that all experiments presented in Chapters 4-6 aim to validate the feasibility and

bene�t of the proposed framework, not for the immediate deployment. For real world application of our

framework, current soil and weather data corresponding to the testing farm needs to be collected to con�gure

the crop model within DSSAT, and more details can be found in Chapter 7.

4.1 Dataset for Simulation

The experiments in this chapter simulate the growth of the maize crop in Ames, Iowa, in 1999. The simulation

starts on April 25th, the planting happens on May 27th, and the crop is harvested no later than Oct 24th.

The soil has a depth of 151 cm, and the plant density is 7.6 plant/m2. For this case study, the irrigation is

set to 0. This is consistent with the current practice in Iowa, where the maize crop is not irrigated. The

detailed description of state variables from the simulator can be found in Table A.1 in Appendix A. The

details of the baseline polices are described below. The baseline policy applies 160, 240, or 280 kg/ha of N

fertilizer when the crop reaches stage v5, vegetative stage 5.

4.2 Implementation Details

For all the experiments in this case study, weight parametersw1; w2, and w3 in the reward function (3.1) were

set to be 0.1, andw4 was set to be 1. We chose to use the state variable \topwt" (top weight (kg/ha)) from

Table A.1 to represent the yield Y in the reward function (3.1). For both DQN and SAC, we implemented the

training using Pytorch, and used the Adam [35] optimizer with an initial learning rate of 0.00005 and a batch

size of 64 to train the neural network. The deep neural network was designed to have 2 hidden layers with 64

hidden units in each layer. We trained the policies for 1200 episodes with the exploration rate� decreasing

10



from 1 to 0, following a decay factor of 0.992. For DQN, the discrete action space was de�ned to be:

A = f 40k
kg
ha

N fertilizer jk = 0 ; 1; 2; 3; 4g: (4.1)

This design of the action space includes standard amounts of N fertilizer that farmers can potentially apply

in a single day and also provides enough options for �nding good policies. The discount factor was set to be

0.99. For SAC, the agent actionasac varies from 0 to 200 and is discretized into the same action space as the

one used for DQN through the mapping:

arg min
a2A

kasac � ak; (4.2)

for both training and testing. The discretization is included for being consistent with the action space used

in the training using DQN and also with farmers' fertilization patterns, i.e., fertilize only a few times in the

whole growth cycle. The discount factor and smoothing constant for updating the target network were set to

be 0.98 and 0.001, respectively.

For comparison with the trained policies, we also implemented the standard management practice in

[34], which suggests to add nitrogen at vegetative growth stage (vstage) 5, the stage when crop reaches �ve

expanded leaves.

4.3 Training Results and Evaluations

The training curve using DQN, averaged over �ve trials, is shown in Fig. 4.1. During the �rst 200 episodes of

exploration, due to the large exploration rate, the DQN agent over-fertilizes, causing signi�cant penalties

due to the existence ofPt in (3.1). After 800 episodes of training, the learning converges, constantly giving

a cumulative reward of over 2000. Concretely, Table 4.1 compares the performance of the DQN-trained

policy and three baseline strategies, corresponding to 160, 240, 280 kg/ha of nitrogen applied at stage v5,

as suggested in [34]. The trained DQN agent decides to apply a total of 240 kg/ha nitrogen fertilizer input

during the growing season, and achieves 21711.8 kg/ha top weight of maize at maturity, 0.11 kg/ha of nitrate

leaching, and a cumulative reward of 2147.1. Among three baseline policies, the one with 280 kg/ha achieves

the largest cumulative reward of 2142.9 and largest top weight of 21709.5 kg/ha. Compared with the best

baseline, DQN achieves slight improvement on top weight (yield) at maturity while using 14% less nitrogen

input, being more cost-e�cient. Compared to the baseline using same amount of nitrogen input, DQN

achieves a 1% increment on the top weight (yield) at harvest. In general, the trained DQN agent achieves

better results than the baseline methods.

Table 4.1: Performance comparison between the trained policy from DQN and baseline policies for Iowa.
Baseline (X) indicates that X kg/ha of nitrogen is applied at stage v5. The trained policy from DQN achieves
a higher cumulative reward than the baseline methods.

Methods
Nitrogen input

(kg/ha)
Nitrate leaching

(kg/ha)
Top weight at maturity

(kg/ha)
Cumulative reward

Baseline (160) 160 0.11 21133.3 2097.3
Baseline (240) 240 0.11 21502.9 2126.3
Baseline (280) 280 0.11 21709.5 2142.9
DQN 240 0.12 21711.8 2147.1

The performance of the trained policy from SAC is shown in Table 4.2. Although using less nitrogen
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Figure 4.1: Cumulative reward versus episodes for training with DQN for Iowa. Results are averaged over
�ve trials, with the light-red shaded area denoting the variance. Top: full view. Bottom: zoomed-in view for
400{1200 episodes

that causes a smaller top weight at maturity, the trained policy from SAC still achieves a cumulative reward

similar to that achieved by the trained policy from DQN. Thus, both RL algorithms succeeded in �nding a

better management policy than the baseline. However, the learning process converged much faster with SAC.

Speci�cally, the cumulative reward of the training curve with SAC reached 2100 within 700 episodes, while

additional 300 episodes were needed to achieve similar results with DQN.

Table 4.2: Performance comparison between trained policies from SAC and DQN for Iowa. The trained
policies from di�erent RL algorithms achieve similar cumulative rewards and outperform the baseline method.

Methods Nitrogen input (kg/ha)
Top weight at maturity

(kg/ha)
Cumulative reward Episodes of convergence

Baseline (280) 280 21709.5 2142.9 N/A
DQN 240 21711.8 2147.1 1000
SAC 200 21503.3 2144.2 700

12



Chapter 5

Optimizing N Fertilization and

Irrigation under Full Observation

In this chapter, we present the experiment setup and results for the case study of optimizing N fertilization

and irrigation simultaneously under full observation for maize crop in Florida, where irrigation is crucial

for the growth of maize crop. We leveraged DQN to train the RL agent with 5 di�erent reward functions

to demonstrate the adaptability of our framework to di�erent tradeo�s among crop yield, N fertilizer use,

irrigation water use, and environmental impact. The performance of all the trained policies was compared

with a baseline policy following a corn production guideline for farmers in Florida from [36].

5.1 Dataset for Simulation

The experiments in this chapter simulate the growth of the maize crop in Gainesville, Florida, in 1982. The

simulation starts on Jan 30th, while the crop is planted on Feb 26th and harvested when reaching maturity.

The soil in this case has a depth of 180 cm, and the plant density is 7.2 plant/m2. The details of the baseline

policy are described below. For N fertilization, 40 kg/ha of fertilizer is applied at the planting date, 40

kg/ha is applied when the maize reaches about 12 inches tall, 150 kg/ha is applied 4 weeks after, and �nally

130kg/ha is applied 6 weeks after. For irrigation, one inch of water is fed every 10 days until the maize

reaches 15 inches high, an inch is applied every 7 days before tassel emergence, and �nally an inch of water is

applied every 3 days until maize maturity.

5.2 Implementation Details

The neural network of the Q function de�ned in (3.5) was designed to have 3 hidden layers with 256 units in

each layer. The discrete action space was set as:

A = f 40k
kg
ha

N fertilizer & 6 k
L

m2 Irrigation water jk = 0 ; 1; 2; 3; 4g; (5.1)

with a size of 25. This design of the action space includes standard amounts of N fertilizer and irrigation

water that farmers can potentially apply in a single day and also provides enough options for �nding good

policies. The discount factor was set to be 0.99. For updating the neural network, we utilized Pytorch and
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Adam [35] optimizer with an initial learning rate of 1e-5 and a batch size of 640. We trained the policies for

4000 episodes with the exploration rate� decreasing from 1 to 0, following a decay factor of 0.994.

Five di�erent functions for r t in (3.3) were used to train the RL agent and we obtained �ve di�erent

trained policies. The parameters used in each reward function (RF) are listed in Table 5.1. RF 1 represents

the economic pro�t ( $/ha) that farmers gain based on the approximate price of maize and cost of N fertilizer

and irrigation water from [37] and [36]. RFs 2-4 indicate the economic pro�t under di�erent situations. To be

more speci�c, RF 2 represents the extreme case when irrigation water is free; RF 3 denotes the extreme case

when N fertilizer is free, and RF 4 simulates the situation when the price of N fertilizer is doubled. Compared

with RFs 1-4 that consider economic pro�t only, RF 5 includes the additional term of nitrate leaching, an

environmental factor. RF 5 is designed with similar weights on Yield, N fertilizer usage and irrigation usage,

and a much larger weight on nitrate leaching to promote minimal nitrate leaching while obtaining a good

economic pro�t. In agriculture, both the grain weight and top weight can be used to represent yield of the

crop. Here, we choose to use the state variable "grnwt" (grain weight dry matter (kg/ha)) from Table A.1 to

represent the yield N t in the reward function, since the approximate price of maize is based on the grain

weight of maize instead of top weight.

Table 5.1: Parameters used in each reward function (RF) de�ned by (3.3)

w1 w2 w3 w4

RF 1 0.158 0.79 1.1 0
RF 2 0.158 0.79 0 0
RF 3 0.158 0 1.1 0
RF 4 0.158 1.58 1.1 0
RF 5 0.2 1 1 5

Table 5.2: Evaluation results of trained policies under full observation and the baseline policy.N l represents
the N leaching amount. Trained Policy x indicates the training result of the RL agent using reward function
(RF) x. The trained policies from our RL-based framework have di�erent strategies targeting their own
reward function design.

N Input (kg/ha) Water Input (L/m 2) N l (kg/ha) Yield (kg/ha)
Baseline Policy 360 393.7 212.6 10771.5

Trained Policy 1 200 120 35.5 10852.4
Trained Policy 2 200 732 59.4 11243.8
Trained Policy 3 19920 108 6205.0 10865.2
Trained Policy 4 160 102 34.9 10357.6
Trained Policy 5 200 138 39.2 10926.1

5.3 Training Results and Evaluation

Five trained policies were achieved using �ve di�erent reward function designs. For illustration purpose, the

training curves using RF 1, which only considers economic pro�t, and RF 5, which includes both economic

and environmental considerations, are shown in Figure 5.1. According to Figure 5.1, we see that the initial

cumulative rewards for both of the training curves are extremely small due to the initial large exploration

rate, which leads to a large amount of fertilization and irrigation. The initial cumulative reward of the

training curve using RF 5 is even smaller due to the additional penalty of nitrate leaching. Then, the training

14



curve using RF 1 converges after around 2500 episodes, reaching a cumulative reward of about 1600, and

the training curve using RF 5 also converges after 2500 episodes, but with some 
uctuations. The reward

function design in this case study(3.3) does not include the additional penalty Pt , which was included in

(3.1), and both training curves converge. Thus, the inclusion ofPt is optional in the design of the reward

function in order to �nd the optimal management policies.

Figure 5.1: Cumulative reward versus episodes for policy training under RF 1 (Top) and RF 5 (Bottom).
Results are averaged over �ve trials, with light-blue shaded areas denoting the variance.

The evaluation results of all the trained policies under full observation are shown in Table 5.2 and Table

5.3. It is worth mentioning that due to the random initialization of the Q-network and the fact that the

Q-network gets updated every episode, the policies evaluated above may not represent the most ideal one

from training. However, the trained policies we picked are representative enough to demonstrate the ability of

RL to optimize crop management and the in
uence of the reward functions on the training results. According

to Table 5.2, the reward function a�ects the strategy of the trained policy signi�cantly. For example, trained

with RF 2 which indicates the zero cost of irrigation water, the Trained Policy 2 applies the biggest amount

of irrigation water while keeping the N input low, leading to the highest yield and the largest cumulative

reward according to RF 2. Similarly, with a zero cost of nitrogen fertilizer in RF 3, the Trained Policy 3

applies a large amount of N fertilizer with a small amount of irrigation. Regrading RF 4 when the cost

of N fertilizer doubles, the Trained Policy 4 results in a slightly smaller amount of N input with a similar

amount of water input. According to Table 5.3, we see that given a RF to compute the cumulative rewards
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Table 5.3: Performance of the baseline policy and trained policies in terms of cumulative reward computed
using di�erent reward functions (RFs). For each RF, the largest cumulative reward value is shown in bold.

RF 1 RF 2 RF 3 RF 4 RF 5
Baseline Policy 984 1417 1269 700 338

Trained Policy 1 1425 1557 1538 1267 1673
Trained Policy 2 813 1619 971 655 1020
Trained Policy 3 -14139 -14020 1598 -29876 -48880
Trained Policy 4 1398 1510 1524 1272 1635
Trained Policy 5 1417 1568 1575 1259 1651

of di�erent trained policies, the largest reward is almost always achieved by the policy trained with this

particular RF (e.g., Trained policy 1 achieves the highest cumulative reward with RF 1). For RF 5, Trained

policy 5 achieves a cumulative reward slightly smaller than the largest one from Trained Policy 1 but still

much larger than the one from the baseline policy. The enormous negative values of the cumulative rewards

of Trained Policy 3 are caused by the extremely large amounts of N input, which are not punished during

the training of Trained Policy 3 using RF 3. In general, the results above demonstrate the ability of RL to

optimize crop management under di�erent criteria.

Application history of N fertilizer and irrigation water from all the trained policies are also analyzed. For

illustration purpose, the application history of the baseline policy and Trained Policy 1, and the history of

the baseline policy and the Trained Policy 5 are visualized in Figure 5.2 and Figure 5.3 respectively. For all

of the trained policies, most of the N fertilizer and irrigation water are applied during April to June, which is

the crucial growth period for maize [38]. This fact further certi�es the reasonableness of our trained policies

and thus our proposed framework.
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Figure 5.2: Comparison of the N fertilization (Top) and irrigation (Bottom) determined from the baseline
policy and Trained Policy 1.
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