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Abstract

The problem of optimal control has been studied starting from the 17th century. Since then, people have

developed different approaches for solving the optimal control problem and applied the theory of optimal

control in many areas, including economics, engineering, and operations research. However, those approaches

assume people have full knowledge regarding the dynamical system for the optimal control problem, which is

not always possible due to the randomness and uncertainties in the real world. In recent years, data-driven

approaches have been established to solve the optimal control problem with partially known dynamical

systems. One of the approaches is known as reinforcement learning, which is a branch of machine learning

using rewards for desired or undesired behavior. Model-based reinforcement learning, as one way for the

agent to learn optimal behaviors, is more widely accepted because of higher data efficiency. To capture more

information about the model during the learning process for better performance, it is also suggested the

agent uses learning from distributions rather than point estimation. However, due to the uncertainties, the

learned model is likely to have a distribution that is different from the true model, which can cause the agent

to perform poorly in the real world and may lead to dangerous consequences.

The thesis considers the problem of errors in distributions between the learned model and the true model

during the learning process from the control perspective and presents an approach to measure the difference

between distributions as well as to provide a bound for the difference that can guarantee the performance for

the agent. This thesis uses a continuous-time nonlinear stochastic system driven by the Wiener process. The

system has the initial condition sampled from a distribution, and also has uncertainties in both the drift

function part and the diffusion function part. The L1 adaptive controller is introduced for such a class of

systems. Inside the L1 system, another Wiener process is introduced into both the reference system and the

ideal system. Both systems have the same initial condition and corresponding initial condition distribution.

The performance of L1 adaptive controller is then analyzed. A mean-square distance bound is provided

between trajectories in actual and reference systems as well as trajectories in reference and ideal systems

based on incremental Lyapunov functions. Furthermore, a bound between distributions behind trajectories

between actual and ideal systems is subsequently provided. Simulation results are demonstrated how the

controller can be used with traditional motion planning algorithms for obtaining safe trajectories. The code

for the simulation is available at: https://github.com/SitaoZhang/StochasticMotionPlanning.jl
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Chapter 1

Introduction

Optimal control is an area under mathematical optimization that finds a control given a dynamical system

such that an objective function related to the system is optimized. The problem of optimal control is used

in many real-world situations. For example, suppose there is a car driving straight on the hilly road. The

optimal control problem is then to find the optimal way for the driver to press the accelerator and shift

gears so that the total travel time is minimized [1]. However, optimal control problem requires the system

dynamics to be fully known, whereas, in many situations, the system dynamics is only partially known due

to the environmental uncertainties [2]. In recent years, data-driven methods are developed for such optimal

control problems with partially known system dynamics, such as Machine Learning (ML) [3]. The running

methodology under Machine Learning is Reinforcement Learning.

These days Reinforcement Learning attracts huge interest from people in artificial intelligence and

computer science community [4]. In simple words, reinforcement learning allows the agents to learn from the

consequences of their own decisions instead of from the decisions of human experts and has a wide range of

applications in the real world [5], [6]. There are two ways for the agent to learn the optimal behaviors to

achieve the maximum reward objective with interactions from the environment. The first way is model-free

RL, where the agent ignores the model and obtains the maximum reward explicitly through the trial-and-error.

The other way is model-based RL, where the agent learns the model dynamics through the mapping of

states and inputs, then uses the learned dynamics with a controller to decide the control and plan the

optimal trajectory for the least cost in terms of the sequence of states and controls. One main advantage

of model-based reinforcement learning is sample efficiency. Many models require very few samples for the

agent to learn. Thus, once the cost function and the model dynamics are known or learned, then the optimal

trajectory can be planned without further sampling.

For model-based reinforcement learning, one way for the agent is to learn the distribution of the model

dynamics. The other way is to apply the point estimate method, where the agent learns the model containing

unknowns through random samples. The main advantage of learning the distribution of the model dynamics

over the point estimate method is that: learning the distribution is a more robust approach and can provide

more information to the agent, such as the uncertainty or the accuracy of the estimate. However, in general

for model-based reinforcement learning, one drawback is that the model itself, especially with unknowns, can

contribute errors to the agent during the learning process. For an agent learning the distribution of the model

dynamics, small errors will accumulate quickly during the learning process. This error accumulation may

then lead the controller to plan with a suboptimal policy, which results in the distribution mismatch problem
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Figure 1.1: Sample graphic illustration for: (a) model-free reinforcement learning (the left graph). (b)
model-based reinforcement learning (the right graph).

[7]. The distribution mismatch problem, also known as distributional shift, comes from the difference in data

distribution between the learning process and the deployment process, where the agent uses the learned data

to perform real-world tasks especially under the presence of noise. The distribution mismatch problem can

cause the agent to perform poorly and even result in dangerous situations. Thus, we want the agent to be

robust against the error from the process of learning the distribution of the model dynamics so that the error

will not accumulate.

By definition, there is a strong link especially between the control theory and model-based reinforcement

learning. In fact, model-based reinforcement learning uses optimal control to plan the trajectory and on the

other hand, it brings optimality into the field of robust and adaptive control [8]. For example, Q-learning,

which is one method of solving the reinforcement learning problems, can be viewed as the direct approach for

adaptive optimal control [9]. Furthermore, robust and adaptive control are applied to handle the unknowns in

the system, which is one choice to contain the effect of unknowns for error accumulation during the learning

process [2].

Figure 1.2: Some advantages using adaptive control: (a) Provides transient tracking performance. (b)
Provides steady-state tracking performance. (c) Time-delay margin: The adaptive control can provide the
tracking performance within some time delay of the control input before the system becomes unstable. (d)
Disturbance rejection: The adaptive control is able to provide the stable tracking performance under the
presence of disturbance in control signals.

adaptive control has no transient guarantees in general; only L1 had!! The figure is misleading.

Please edit the figure and fix the caption.

For model-based reinforcement learning with optimal control problem, the stochastic model is the best

choice under the presence of uncertainties or when the model dynamics is not fully known. Stochastic models

include the randomness in many real-world processes by nature, which is denoted as aleatoric uncertainties [2].

Moreover, stochastic models can also represent epistemic uncertainties, which are uncertainties explainable
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by the data. This can prevent the model exploitation and enable safe operation for the agent during the

reinforcement learning process. Stochastic models also belong to probabilistic models. Every stochastic

model has probabilities assigned to events given the model and uses the corresponding probabilities to make

predictions or provide other information during the process.

Figure 1.3: With no inclusion of epistemic uncertainty, the planned trajectory from optimal control with
learned dynamics may be very different from the true trajectory as presented on the left graph, resulting in
errors during the learning process. With inclusion of the epistemic uncertainty, the region with high epistemic
uncertainty will be identified. Thus, the planned trajectory will avoid the high epistemic uncertainty region
and ensure safety as shown on the right graph.

So for model-based reinforcement learning with stochastic models, since the learned model is stochastic,

then each trajectory is different due to the randomness of the system. Thus, to prevent error accumulation

during the learning process for model distribution, we want to find a way to quantify the difference between

true sample trajectories and learn sample trajectories so that the agent is robust against this difference with

the approach of adaptive control. However, in previous works, adaptive control is used with probability

models including Gaussian Processes Regression (GPR) and ensembles of Deep Neural Networks (DNN) only

to provide robustness results against parametric errors [10], [11]. Also, these probabilistic models cannot

represent the true dynamics, but can only improve the predictive quantity. The problem of using adaptive

control to provide robustness between state distributions in learned dynamics and in true dynamics, given

the stochastic model that outputs distributions, has never been studied.

In the area of control theory, the stochastic models are written in terms of the nonlinear stochastic

differential equations, which are widely used for modeling dynamical systems under the presence of noise. To

study the behavior between trajectories in nonlinear stochastic dynamic systems, the analysis involving the

incremental stability and nonlinear contraction theory has been investigated. Previous works include using

contraction metrics to provide the mean-square distance bound between any two trajectories of a nonlinear

stochastically contracting system [12], [13]. Furthermore, using the result from the mean-square distance

between trajectories for the nonlinear stochastically contracting system, the extension to the convergence

in the Wasserstein metric between the laws in corresponding trajectories with the given initial condition

distributions is established [14], which captures the underlying geometry in the space of nonlinear stochastic

systems. However, all these works have assumed that the stochastic dynamical systems are fully known. The

incremental stability of nonlinear stochastic dynamic systems with unknown uncertainties has never been

systematically studied. The uncertainties in the system will model both aleatoric and epistemic uncertainties

for the agent in the reinforcement learning process.

In this thesis, we consider continuous-time nonlinear stochastic systems with unknown uncertainties plus
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unknown parameters driven by the Wiener process, written in the form of Itô differential equation [15]. We

propose the stochastic L1 adaptive controller to handle the uncertainties and use an incremental Lyapunov

function to handle the unknown parameters and the effect of the Wiener process. Our goal is to provide

a uniform performance bound for nonlinear stochastic systems with uncertainties between trajectories and

between the distributions behind trajectories with the exponential decay in time and the intensity of the

Wiener process.

The main contributions are: (i) We consider the nonlinear stochastic differential equations with the

stochastic L1 adaptive controller, as opposed to considering the linear stochastic differential equations with

the deterministic L1 adaptive controller in [16]. (ii) We extend from the deterministic nonlinear systems

with nonlinear deterministic L1 controller [17] to stochastic nonlinear systems with the stochastic nonlinear

L1 controller and evaluate the corresponding stochastic systems performance. (iii) Instead of using the

control contraction metric [12], [13], we use a more general incremental Lyapunov function [18] to study the

incremental stability of the nonlinear stochastic systems.

The outline of the thesis is organized as follows. We begin with Chapter 2 by describing the stochastic

differential equation modeling the noise for our system, which will be used for our problem formulation in

Chapter 4. In chapter 3, we briefly discuss the measurement for quantifying the change between two data

distributions. Chapter 4 presents the problem formulation by defining our actual stochastic system with

the initial condition sampled from the distribution and introduces the structure of L1 adaptive controller

with the incorporation of incremental stability. The stability and performance of the closed-loop system is

analyzed in Chapter 5. Chapter 6 provides numerical experimentation results to demonstrate our system

performance. Finally, Chapter 7 concludes the paper.

4



Chapter 2

Stochastic Dynamical Systems

Stochastic dynamical systems are the dynamical systems that include the effect of the noise. Many processes

observed in the real-world situations, such as the motion of a collection of particles, and the evolution of a

stock price, contain randomness, which is also described as ”noise”. Stochastic dynamical systems are based

on the measure theory and probability theory. Here in this chapter we cover some background for stochastic

differential equations which describe the stochastic dynamical systems and cover some tools for studying

continuous-time stochastic dynamical systems.

2.1 Stochastic Differential Equations

The stochastic differential equation comes from the Itô process, which is a type of stochastic process introduced

by Japanese mathematician Kiyoshi Itô. The Itô process includes an integral of a process over time and

another process of Brownian motion. Define a probability space (Ω,F ,P) and the filtration {Ft}t≥0, that

models the evolution of information through time. For example, if an event, E, has occurred or not known by

time t, then we have E ∈ Ft. When working within the finite horizon, [0, T ], then we can take F = FT . In

our case, suppose all stochastic processes Xt we consider are Ft-adapted, that is, the value of Xt is known at

time t when the information represented by Ft is known [19]. Then the general description of the Itô process

is given as:

Definition 2.1 [19] An n-dimensional Itô process, Xt = X(t), is a process that can be represented as

Xt = X0 +

∫ t

0

a(Xs, s)ds+

∫ t

0

b(Xs, s)dW (2.1)

where W is an m-dimensional standard Brownian motion, and a(Xt, t) and b(Xt, t) are n-dimensional and

n×m-dimensional Ft-adapted processes, respectively.

The stochastic differential equation is then the shorthand notation for Equation (2.1) such that:

Definition 2.2 [19] The stochastic differential equation for the Itô process in Definition 2.1 is given by:

dXt = a(Xt, t)dt+ b(Xt, t)dW ; X0 = x (2.2)

where X0 = x is the starting point. As before, W is an m-dimensional standard Brownian motion, and

a(Xt, t) and b(Xt, t) are n-dimensional and n×m-dimensional Ft-adapted processes, respectively.
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Remark 2.1 [20] a(Xt, t) and b(Xt, t) are also known as drift term and diffusion terms, correspondingly.

Remark 2.2 [20] The equivalent form of Equation (2.2) is:

dXt = a(Xt, t)dt+ b(Xt, t)
√
dtϕ; X0 = x

where ϕ ∼ N (0m×1, Im×m).

2.2 Itô Lemma

A useful tool to solve SDE is Itô’s Lemma. Itô’s Lemma is the most important result in stochastic calculus.

Here we state a general form of the result and provide some definitions derived from Itô Lemma which will

be used later.

Theorem 2.1 (Itô’s Lemma for multi-dimensional Itô’s process) [21] Let Xt = X(t) be an n-dimensional Itô

process satisfying the following SDE:

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW

where W is an m-dimensional standard Brownian motion, and µ(t,X(t)) and σ(t,X(t)) are n-dimensional

and n×m-dimensional Ft-adapted processes, respectively. If f(t, x) : R+ ×Rn → Rn has a continuous partial

time derivative and continuous second partial space derivatives, then Ft := f(t,X(t)) is an n-dimensional Itô

process, whose kth component Fk is given by:

dFk =
∂fk
∂t

dt+
∂fk
∂xi

dXi +
1

2

∂2f

∂xi∂xj
dXidXj (2.3)

summing over repeated indices, with the understanding that dWidWj = δijdt, dWidt = dtdWi = dtdt = 0.

Remark 2.3 Another equivalent form for Equation (2.3) is:

F (t)− F (0) =

∫ t

0

[∑
i

µi(s,X(s))
∂f

∂xi
+

1

2

∑
i,j

Si,j(s,X(s))
∂2f

∂xi∂xj
+
∂f

∂t

]
ds+

∫ t

0

∑
i

∂f

∂xi
σi(s,X(s))dWi

where {Si,j(t,X(t))} = S(t,X(t)) = σ(t,X(t))σ(t,X(t))T .

Note:

dXidXj = (µi(t,X(t))dt+ σi(t,X(t))dWi)(µj(t,X(t))dt+ σj(t,X(t))dWj)

= (
∑
k

σikdWk)(
∑
n

σjndWn) = (
∑
k

σikσjk)dt = (σσT )i,jdt.

Definition 2.3 (Differential Operator) [22] The differential operator is defined as:

L =
∑
i

µi(t,X(t))
∂

∂xi
+

1

2

∑
i,j

Si,j(t,X(t))
∂2

∂xi∂xj
+
∂

∂t
,

where Si,j is defined in Remark 2.3.
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Definition 2.4 (Infinitesimal Generator) [15] Let {Xt} be an Itô process in Rn. Let Px denote the law of X

given initial datum X0 = x, and let Ex denote expectation with respect to Px. The infinitesimal generator A

of Xt is defined by:

Af(x) = lim
t→0

Ex[f(Xt)]− f(x)

t
; x ∈ Rn

where f : Rn → R is a twice-differentiable function with compact support in Rn.

Remark 2.4 Note that A and L coincide on C2
0 (Rn).
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Chapter 3

Statistical Distance

Statistical distance measures the distance between two objects described in the area of probability theory or

statistics, such as the distance between two random variables or two probability distributions. In reinforcement

learning, statistical distances provide information on changes of the data related to the agent. Such changes

of the data may cause performance issues. Typically, statistical distance and metrics are not the same; e.g.

as Kullback–Leibler divergence. In this thesis, the Wasserstein distance will be used to measure the distance

between probability distributions. As we will show later, the Wasserstein distance is also a metric that shares

many useful properties.

3.1 Optimal Transport

In recent years, one of the most popular topics to learn in the area of reinforcement learning is optimal

transport. The optimal transport problem is first formulated by Monge and then reproduced by Kantorovich

with introduction of linear programming and duality theorem [23]. The basic idea of the optimal transport

is to find a plan to transform one probability distribution into the other with the least effort. The strict

mathematical formulation by Kantorovich is given as:

Definition 3.1 [24] Let X, Y be two separable metric spaces. For any two probability measures µ, ν such that

µ ∈ P (X) and ν ∈ P (Y ) with a cost function c : X×Y → [0,∞), the optimal transport problem is formulated

as:

inf{K(γ) :=

∫
X×Y

c(x, y)dγ|γ ∈ Π(µ, ν)} (3.1)

where Π(µ, ν) is the set of transport plans satisfying the following:

∀π ∈ Π,

∫
π(x, y)dy = µ(x),

∫
π(x, y)dx = ν(y).

The transport plan γ which minimizes the problem in Definition 3.1 is called as the optimal transport plan

between µ and ν. The minimum of the problem (3.1) can be found by solving the following dual problem:

sup
[ ∫

φ(x)dµ(x) +

∫
ψ(y)dν(y)

]
,

8



among all functions φ ∈ L1(µ), ψ ∈ L1(ν) such that:

φ(x) + ψ(y) ≤ c(x, y).

The equivalence is known as Kantorovich duality principle and the strict proof for duality can be found in

[23], [24].

3.2 Wasserstein distances

The concept of Wasserstein distance is formulated by Kantorovich during his study in optimal transport

problem. The Wasserstein distance is a metric to compare two probability distributions and interpret the

underlying geomeotry of the space where the Wasserstein distance is defined on. The theory of optimal

transport used in this paper is borrowed from Villani [23], where a detailed exposition can be found. In

this paper, the 2-Wasserstein distance is used for analysis in the following chapters. The definition for the

Wasserstein space and 2-Wasserstein distance is defined as:

Definition 3.2 [23] Let (X, d) be a Polish metric space, and let p ∈ [1,∞). Let µ be a probability measure on

X, the Wasserstein space of order p is defined as:

Pp(X) = {µ ∈ P (X);

∫
X

d(x0, x)
pµ(dx) <∞},

where x0 ∈ X is arbitrary. This also implies that the space does not depend on the choice of the point x0.

Thus, the space Pp(X) is defined such that the corresponding Wasserstein distance with any p ∈ [1,∞) is

always finite.

Definition 3.3 [14] For any two probability measures µ and ν on Rn with bounded second moments, the

2-Wassestein distance between the two measures is defined as:

W2(µ, ν) = inf(E∥X − Y ∥2) 1
2

= inf
π∈Π

[

∫ ∫
∥X − Y ∥2dπ(x, y)] 12

where the infimum is taken over all joint probability measures in set Π on Rn × Rn with the marginal defined

as X ∼ µ and Y ∼ ν.

One good thing should be noted about the Wasserstein distance is that it satisfies the axiom of distance for

any p ∈ [1,∞) with any three probability measures µ1, µ2 and µ3 on X such that:

(nonnegativity) Wp(µ1, µ2) ≥ 0,

(symmetry) Wp(µ1, µ2) =Wp(µ2, µ1),

(triangle inequality) Wp(µ1, µ3) ≤Wp(µ1, µ2) +Wp(µ2, µ3)

9



Chapter 4

ILF Based Adaptive Control

In this chapter we introduce our nonlinear stochastic systems with uncertainties and the structure of proposed

L1 controller for the uncertain nonlinear stochastic system. The key idea behind L1 controller is to provide

estimates due to the unmatched uncertainties between the ideal system and actual system, and use the

estimates in the controller to cancel the effects of uncertainties within a low-pass filter given the corresponding

bandwidth. The incremental Lyapunov function is introduced to study the incremental stability for trajectories

in corresponding systems.

4.1 Problem Setting

We consider the actual system described by the Itô diffusion process:

dx(t) =
[
f(x(t)) +B(x(t))(u(t) + h(x(t), t))

]
dt+B(x(t))(Σ(x(t)) + σ(x(t)))dw(t). (4.1)

x(0) = x0 ∼ ν0. (4.2)

where x(t) ∈ Rn is the actual system state; u(t) ∈ Rm is the control signal. The functions f(x(t)) ∈ Rn

and B(x(t)) ∈ Rn×m are known. Σ(x(t)) ∈ Rm is an unknown diffusion parameter describing w(t), and

h(x(t), t) ∈ Rm represents the uncertainties in the drift term while σ(x(t)) ∈ Rm represents the uncertainties

in the diffusion term. w(t) is a scalar Wiener process that represents the noise for the system. The initial

condition x0 is a random variable sampled from the initial condition distribution ν0. The system without

noise can be represented as [17]:

ẋ(t) = F (x(t), u(t)) (4.3)

= f(x(t)) +B(x(t))(u(t) + h(x(t), t))

with x(0) = x0 ∼ ν0. The function F is called the drift function in Equation (4.1). Furthermore, the

unperturbed/nominal dynamics (h ≡ 0, σ ≡ 0) are therefore represented as:

ẋ(t) = F̄ (x(t), u(t)) (4.4)

= f(x(t)) +B(x(t))u(t)

10



with x(0) = x0 ∼ ν0. Consider a desired/ideal control trajectory u∗(t) ∈ Rm and the induced desired/ideal

state trajectory x∗(t) ∈ Rn from any planner based on unperturbed/nominal dynamics plus some Wiener

process w∗(t) which is independent of w(t):

dx∗(t) = F̄ (x∗(t), u∗(t))dt+B(x∗(t))σ(x∗(t))dw∗(t) (4.5)

=
(
f(x∗(t)) +B(x∗(t))u∗(t)

)
dt+B(x∗(t))Σ(x∗(t))dw∗(t),

x∗(0) = x∗0 ∼ ν∗0 , (4.6)

where ν∗0 and ν0 are different initial condition distributions. Since the state x(t) and x∗(t) are viewed as

random variables, then x(t) and x∗(t) have corresponding time-varying distributions, denoted as νt and ν
∗(t).

The planner ensures that the desired state-trajectory x∗(t) remains in a compact safe set X ⊂ Rn, for all

t ≥ 0.

Remark 4.1 For simplicity, we consider the scalar Wiener process for the actual system in Equation (4.1).

The results can be extended to multidimensional Wiener process cases.

The goal is to design a control input u(t) so that not only the state x(t) of the true stochastic system in

(1) and the state x∗(t) of the desired stochastic system in (5) are bounded in the mean-square sense, but also

the distribution for the state x(t) of the true stochastic system in (1), νt, and the distribution for the state

x∗(t) of the desired stochastic system in (5), ν∗(t), are bounded in the Wasserstein sense, while also ensuring

x(t) ∈ X for all t ≥ 0.

The first definition we need is:

Definition 4.1 ([17], Definition 2.1) Given a positive scalar ρ and the desired state trajectory x∗(t), Ω(ρ, x∗(t))

denotes the ρ-norm ball around x∗(t), i.e.

Ω(ρ, x∗(t)) = {y ∈ Rn|∥y − x∗(t)∥ ≤ ρ}.

The ρ-norm ball Ω(ρ, x∗(t)) also induces a tube around x∗(t), which is given by:

O(ρ) =
⋃
t≥0

Ω(ρ, x∗(t)).

The following assumptions will be used for further analysis:

Assumption 1. There exist constants K1,K2 > 0 such that ∀t ∈ [0, T ], x, y ∈ Rn, we have

∥F (x)∥+ ∥B(x)Σ(x)∥ ≤ K1(1 + ∥x∥),

∥F (x)− F (y)∥+ ∥B(x)Σ(x)−B(y)Σ(y)∥ ≤ K2(∥x− y∥).

Assumption 1 is the standard rule which guarantees existence and uniqueness of solutions to be described by

Itô process.

Assumption 2. ([17], Assumption 2.1) Given the positive number ρ, the ideal system trajectory satisfies

x∗(t) ∈ Xρ, for all t ≥ 0, where

Xρ = X ⊖ B(ρ), B(ρ) = {y ∈ Rn|∥y∥ ≤ ρ}.
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Assumption 3. ([17], Assumption 2.2) The desired control input u∗(t) satisfies

∥u∗(t)∥ ≤ ∆u∗ , ∀t ≥ 0,

with the upper bound ∆u∗ known from the planner, which provides the desired trajectory x∗(t) in Equation

(4.5).

Assumption 4. ([17], Assumption 2.3) The functions f(x) ∈ Rn and B(x) ∈ Rn×m are bounded and

continuously differentiable with bounded derivatives, satisfying

∥f(x)∥ ≤ ∆f , ∥∂f(x)
∂x

∥ ≤ ∆fx , ∥B(x)∥ ≤ ∆B , ∥∂B(x)

∂x
∥ ≤ ∆Bx ,

where all bounds are assumed to be known.

Assumption 5. ([17], Assumption 2.4) The uncertainty h(t, x) is bounded and continuously differentiable in

both x and t with bounded derivatives, satisfying

∥h(t, x)∥ ≤ ∆h, ∥∂h(t, x)
∂x

∥ ≤ ∆hx
, ∥∂h(t, x)

∂t
∥ ≤ ∆ht

, ∥Σ(x(t))∥ ≤ ∆Σx
, ∥σ(x(t))∥ ≤ ∆σx

,

with all bounds assumed be known for all t ≥ 0.

Assumption 6. ([17], Assumption 2.5) The input gain matrix B(x) has full column rank. Furthermore, the

Moore-Penrose inverse of B(x) defined as B†(x) = (BT (x)B(x))−1BT (x) satisfies the following bound:

∥B†(x)∥ ≤ ∆B† , ∥∂B
†(x)

∂x
∥ ≤ ∆B†

x

for all x ∈ O(ρ).

4.2 Incremental Stability

Consider the unperturbed/nominal system as in Equation (4.4):

ẋ = F̄ (x(t), u(t))

= f(x(t)) +B(x(t))u(t).

Recall some definitions about the stability properties for the unperturbed/nominal system.

Definition 4.2 [25] A set M ⊂ Rn is forward invariant with respect to the system (4.4) if every solution of

(4.4) starting from a point of M remains in M.

Definition 4.3 [18] Consider the system (4.4) under the control u = α(x, t), the solution of which is forward

invariant in E ⊂ Rn. The closed-loop system in E is (IES) incrementally exponentially stable if ∀(x1, x2) ∈ E

∥X(t, x1, α(x1, t))−X(t, x2, α(x2, t))∥ ≤ k1e
−k2t∥x1 − x2∥

holds for any t ≥ 0 and for some constants k1, k2 > 0.
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Definition 4.4 [18] For the system ẋ = F̄ (x, t), a function V : E × E → R+ is called IES Lyapunov function,

if

LF̄ (x,t)V (x, ξ) + LF̄ (ξ,t)V (x, ξ) ≤ −2λV (x, ξ) (4.7)

for some λ > 0, and for some α, ᾱ > 0 satisfying

α∥x− ξ∥2 ≤ V (x, ξ) ≤ ᾱ∥x− ξ∥2. (4.8)

The IES of the system ẋ = F̄ (x, t) is equivalent to the existence of an IES Lyapunov function for set stability

of x = ξ, by considering an auxiliary dynamics ξ̇ = F̄ (ξ, t).

Now we place some assumptions on the nominal/unperturbed dynamics and the IES Lyapunov function

V (x, ξ):

Assumption 7. The nominal/unperturbed dynamics in Equation (4.4) admits an incremental exponentially

stable Lyapunov function with positive numbers λ, ᾱ and α as in the Definition 4.4.

Assumption 8. [18] The IES Lyapunov function V (x, ξ) is twice-differentiable with respect to x and ξ with

bounded first and second derivatives with respect to x and ξ such that:

∥∂V
∂x

∥ ≤ c3∥x− ξ∥, ∥∂V
∂ξ

∥ ≤ c3∥x− ξ∥, ∥∂
2V

∂x2
∥ ≤ 2c4, ∥∂

2V

∂ξ2
∥ ≤ 2c4

for some c3, c4 > 0. Together with Assumption 4, 5, Assumption 8 will yield the following:

tr
(
(Σ(x(t)) + σ(x(t)))TB(x(t))T

∂2V

∂x2
B(x(t))(Σ(x(t)) + σ(x(t)))

)
≤ 2c4tr

(
(Σ(x(t)) + σ(x(t)))TB(x(t))TB(x(t))(Σ(x(t)) + σ(x(t)))

)
= 2c4∥B(x(t))

(
Σ(x(t)) + σ(x(t))

)
∥2

≤ 2c4∆B
2(∆Σx

+∆σx
)
2

= 2C1;

tr
(
(−ηr(t) + σ(xr(t)) + Σ(xr(t)))

TB(xr(t))
T ∂

2V

∂xr2
B(xr(t))(−ηr(t) + σ(x(t)) + Σ(x(t)))

)
≤ 2c4tr

(
(−ηr(t) + σ(xr(t)) + Σ(xr(t)))

TB(xr(t))
TB(xr(t))(−ηr(t) + σ(xr(t)) + Σ(xr(t)))

)
= 2c4∥B(xr(t))

(
− ηr(t) + σ(xr(t)) + Σ(xr(t))

)
∥2

≤ 2c4∆B
2(∆σxr

+∆Σxr
)
2

= 2C2;

tr
(
Σ(x∗(t))TB(x∗(t))T

∂2V

∂x∗2
B(x∗(t))Σ(x∗(t))

)
≤ 2c4tr

(
Σ(x∗(t))TB(x∗(t))TB(x∗(t))Σ(x∗(t))

)
= 2c4∥B(x∗(t))Σ(x∗(t))∥2

≤ 2c4∆B
2∆Σ∗

x

2

= 2C3.
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4.3 L1 Adaptive Control

We now show the structure of the designed adaptive controller for the uncertain stochastic nonlinear system

in Equation (4.1). Before proceeding to the detailed description about each component inside the controller,

the following equations of constants are introduced for significance about the results and analysis in the

following chapter of the thesis:

∆δu =
1

2
sup

x∈O(ρ)

Å
λ̄(L−T (x)F (x)L−1(x))

σ>0(B
T (x)L−1(x))

ã
, (4.9)

∆ẋr = ∆f +∆B(∥Im − C(s)∥L1∆h +∆u∗ + ρ∆δu), (4.10)

∆ẋ = ∆f +∆B(2∆h +∆u∗ + ρ∆δu), (4.11)

∆x̃ =

 
4λ̄(P )∆h(∆ht +∆hx∆ẋ)

λ(P )λ(Q)
+

4∆2
h

λ(P )
, (4.12)

∆η̃ = (∆B†
x
∆ẋ + (∥sC(s)∥L1 + ∥Am∥)∆B†)∆x̃, (4.13)

∆θ =
∆B

c3
2 ∆η̃

λ
, (4.14)

∆Ψ̇ = c3∆Bx
∆ẋ, (4.15)

where O(ρ) is defined in Definition 4.1, ∆u∗ is defined in Assumption 3, ∆f ,∆fx ,∆B ,∆Bx
, are defined in

Assumption 4; ∆h,∆ht
,∆hx

are defined in Assumption 5; ∆B† and ∆B†
x
are defined in Assumption 6; α and

ᾱ are defined in Assumption 7; and F (x) is defined as:

F (x) = −∂W (x)

∂x
f(x) +

∂f(x)

∂x
W (x) + (

∂f(x)

∂x
W (x))T + 2λW (x),

where W (x) = (∂
2V

∂x2 )
−1 is referred to as the dual metric such that L(x)TL(x) =W (x) [17].

4.3.1 ILF Based Control: uc(t)

Referring to [17], the following input feedback decomposition is considered:

u(t) = uc(t) + ua(t), (4.16)

where uc(t) is the ILF based control designed to guarantee the incremental exponential stability of the

nominal dynamics in Equation (4.3) and ua(t) ∈ Rm is the L1 control signal, which will be discussed later.
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Referring to [17], the following control law is proposed for uc(t):

uc(t) = u∗(t) + kc(x
∗(t), x(t)), (4.17)

where the law constructed in [17] is used for the feedback term, which is the solution to the following quadratic

program:

kc(x
∗(t), x(t)) = argmin

k∈Rm

∥k∥2, (4.18)

s.t. LF̄ (x,t)V (x(t), x∗(t)) + LF̄ (x∗,t)V (x(t), x∗(t)) ≤ −2λV (x(t), x∗(t)). (4.19)

4.3.2 L1 Adaptive Control: ua(t)

The calculation of the input signal ua(t) depends on three components, which are: the state-predictor, the

adaptation law, and a low-pass filter. Similar to [17], the state-predictor is defined as:

dx̂ = [F̄ (x(t), uc(t) + ua(t) + β̂1(t)) +Amx̃(t)]dt+ [B(x(t)(Σ(x(t)) + β̂2(t)) +Amx̃(t)]dw
∗(t) (4.20)

with x̂(0) = x0, and where x̂(t) ∈ Rn is the state of the predictor, x̃(t) = x̂(t)− x(t) is the state prediction

error, and Am ∈ Rn×n is an arbitrary Hurwitz matrix. Since now we have two uncertainties, h(x, t) in the

drift part and σ(x, t) in the diffusion part, our state-predictor is written in the form of stochastic differential

equation. The uncertainty estimates β̂1(t), β̂2(t) in Equation (4.20) are governed by the following adaptation

laws:

˙̂
β1(t) = ΓProj

H
(β̂1(t),−B(x)TPx̃(t)), β1(0) ∈ H; (4.21)

˙̂
β2(t) = ΓProj

G
(β̂2(t),−B(x)TPx̃(t)), β2(0) ∈ G, (4.22)

where Γ > 0 is the adaptation rate, H = {y ∈ Rm|∥y∥ ≤ ∆h} is the set to which the uncertainty estimate β̂1

is restricted to remain in with ∆h, defined in Assumption 5. Similarly, G = {y ∈ Rm|∥y∥ ≤ ∆Σx
} is the set to

which the uncertainty estimate β̂2 is restricted to remain in with ∆Σx
, defined in Assumption 4. Furthermore,

P is the positive definite matrix that solves the Lyapunov equation AmP + PAm = −Q for some positive

definite matrix Q. Moreover, ProjH(·, ·),ProjG(·, ·) are the projection operator, standard in adaptive control

literature [17].

Finally, the control law ua(t) is defined as the following Laplace transform:

ua(s) = −C(s)(β̂1(s)), (4.23)

where C(s) is a low-pass filter with bandwidth ω and satisfies C(0) = Im.

4.3.3 Low-pass Filter Bandwidth and Adaptation Rate

The L1 adaptive controller uses a low-pass filter C(s) to compensate the uncertainties in the stochastic

system as in Equation (4.1) with C(s) = ω
s+ω Im. As will see in Chapter 5, the filter bandwidth and the

adaptation rate become the factor in determining the bounds between trajectories and distributions behind
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trajectories. However, the filter bandwidth ω and the adaptation rate Γ should satisfy a few conditions

mentioned below. The reasons will be clear from the later derivations in Chapter 5.

Suppose Assumptions 1-8 hold; then for arbitrary positive numbers ρa, ϵ define:

ρr =

 
ᾱ

α
∥x∗0 − x0∥+ ϵ, (4.24)

ρ = ρr + ρa, (4.25)

ζ1(ω) = ρ∆B
c3
α
(

∆h

| 2λ− ω |
+

∆ht +∆hx∆ẋr

2λω
), (4.26)

ζ2(ω) = c3(∆Bx
+∆B +

∆B

ρ21
)(

∆h

| 2λ− ω |
+

∆ht +∆hx∆ẋr

2λω
), (4.27)

ζ3(ω) = ∆hx

4λ∆Bc3 +∆Ψ̇ + (1 + 1
ρ2
1
)∆Bc4∆ẋ

λω
, (4.28)

where ρ1 = ρ+ ρr. ∆ẋr ,∆Ψ̇ are defined in Equation (4.11), (4.15) respectively. Then, let the bandwidth ω of

the low-pass filter C(s) and the adaptation rate Γ satisfy the following conditions:

ρ2r ≥ V (x∗0, x0)

α
+ ζ1(ω) +

C2 + C3

2αλ
, (4.29)

α > (ζ2(ω) + ζ3(ω))(
(ρ+ ρr)

2

ρ2a
), (4.30)

√
Γ >

∆θ(ρ+ ρa)

αρ2a − (ζ2(ω) + ζ3(ω))(ρ+ ρr)2
, (4.31)

where ∆θ is another known positive number as in Equation (4.14).

Remark 4.2 The functions ζ1(ω), ζ2(ω), and ζ3(ω) are constructed such that all functions decrease with the

increase in ω and converge to zero when ω goes to infinity. Thus, there always exists a way for Equations

(4.29)− (4.31) to be satisfied by selecting a large enough bandwidth ω.
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Chapter 5

Analysis of the Controller Performance

In this chapter the performance of the uncertain stochastic system in Equation (4.1) with the L1 feedback

control u(t) defined in Equation (4.16) is analyzed. We will first define the reference system to derive the

bounds between the ideal trajectory x∗(t) and the state x(t) of the uncertain stochastic system, and the

bounds between ideal distributions ν∗t and the distributions νt describing the state of the uncertain stochastic

system. The analysis contains two steps: first the mean-square bounds between ideal trajectory x∗(t) and

the reference system xr(t), and the bounds for states between reference system xr(t) and actual system x(t)

are derived. Then we will derive the Wasserstein bounds between distributions for ideal trajectory ν∗t and for

reference system νrt , and the Wasserstein bounds between distributions for states in reference system νrt and

for states in actual system νt. The proofs for every claim in this chapter are provided in Appendix B.

5.1 L1 Reference System

Assuming that all unknown uncertainties are known, we can analyze the stability and performance of the

L1 adaptive controller when applied to the actual stochastic system in Equation (4.1) and provide bounds

between the desired trajectory x∗(t) and the state x(t), similar to [17]. Based on this assumption, we first

introduce the reference system:

dxr(t) =
[
f(xr(t)) +B(xr(t))h(xr(t), t)

]
dt+ Ur(t) +B(xr(t))(Σ(xr(t)) + σ(xr(t)))dwr(t), (5.1)

Ur(t) = [B(xr(t))(ur(t)− hr(xr(t)))]dt−B(xr(t))σr(xr(t))dwr(t), (5.2)

hr(xr(t), t) = C(s)h(xr(t), t), σr(xr(t)) = C(s)σ(xr(t)), (5.3)

xr(0) = x∗0 ∼ νr0 , (5.4)

where Ur(t) is the reference input defined for the reference system and the C(s) = ω
s+ω Im. For the reference

system, the Wiener process wr(t) is independent of the Wiener processes w∗(t) and w(t), and the same initial

condition as in the ideal system is used. The reference system defines the best achievable performance through

the cancellation of uncertainties within the bandwidth of the controller, defined through the low-pass filter.
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5.2 Mean-square Stochastic Contraction Theorem

We start by obtaining the mean-square bound between ideal system trajectory x∗(t) and the reference system

state xr(t). Combining the reference system in Equation (5.1)-(5.4) and the ideal system in Equation (4.5),

(4.6), we have: da(t) = Ûf(a(t), Ûu(t))dt+ ÛΣ(a(t))dW 2,

a(0) = (x∗(0), xr(0))
T = (x∗0, x

∗
0)

T ,
(5.5)

where Ûf(a(t), Ûu(t)) = ( F̄ (x∗(t), u∗(t))

F (xr(t),−ηr(t))

)
,ÛΣ(a(t)) = (B(x∗)Σ(x∗) 0

0 B(xr)(Σ(xr)− σr(xr) + σ(xr))

)
,

dW 2 =

(
dw∗(t)

dwr(t)

)
.

Define the shorthand notation: v(xr, t) = Σ(xr)− ηr(t) + σ(xr). With the IES Lyapunov function defined as

V (x∗(t), xr(t)), we have the following result:

Theorem 5.1 Assume that the system (5.5) verifies Assumption 1-8. Let the initial condition x∗0 be

independent of the noise and be given by a probability distribution p(x∗0). Then for any desired state trajectory

x∗(t) the state xr(t) of the reference system satisfies:

E(∥x∗(t)− xr(t)∥2) ≤
1

α

Å
C2 + C3

2λ
+ αζ1(ω)

ã
, ∀t ≥ 0. (5.6)

Remark 5.1 As one can see from the proof for Theorem 5.1 in Appendix B and from Definition 4.4, the

following inequality holds:

α∥x∗(t)− xr(t)∥2 ≤ V (x∗, xr) ≤ αζ1(ω) +
C2 + C3

2λ

under any initial condition pair (x∗0, x
∗
0)

T . Thus, we have:

∥x∗(t)− xr(t)∥2 ≤ ζ1(ω) +
C2 + C3

2αλ
≤ ρ2r

by the choice of ρr in Equation (4.29).

Next, we will compute the mean-square bound between the reference system in Equation (5.1)-(5.4) and

the L1 closed-loop system in Equation (4.1) with (4.16). Combining the actual system and the reference

system, we have: dy(t) = f̄(y(t), ū(t))dt+ Σ̄(y(t))dW ′2

y(0) = (x(0), xr(0))
T = (x0, x

∗
0)

T ,
(5.7)
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where

f̄(y(t)) =

(
F (x(t), u(t))

F (xr(t),−ηr(t))

)
,

Σ̄(y(t)) =

(
B(x)(Σ(x) + σ(x)) 0

0 B(xr)v(xr, t))

)
,

dW ′2 =

(
dw(t)

dw∗(t)

)
,

v(xr, t) is the shorthand notation such that: v(xr, t) = Σ(xr) − ηr(t) + σ(xr). With the IES Lyapunov

function defined as V (x(t), xr(t)), we have the following result:

Theorem 5.2 Assume that the system (5.7) verifies Assumption 1-8. Suppose that the stated assumptions

and the conditions in Equations (4.29)− (4.31) hold. Then, let initial conditions x0 and x∗0 be independent of

the noise and given by a probability distribution p(x0, x
∗
0). Additionally, under any given initial conditions

pair (x0, xr(0))
T , assume that the trajectory of the L1 closed-loop system satisfies x(t) ∈ Ω(ρ, x∗(t)), for all

t ∈ [0, τ ], for some τ > 0, with Ω(ρ, x∗(t)) and ρ defined in Definition 4.1 and Equation (4.25), respectively.

Then:

E(∥x(t)− xr(t)∥2) <
1

α

(
e−2λtE(V (x0, x

∗
0)) +

C1 + C2

2λ
+ αρ2a

)
, ∀t ∈ [0, τ ]. (5.8)

Remark 5.2 As one can see from proof of Theorem 5.2 in Appendix B, such α is defined in Equation (4.30)

to guarantee the following:

αρ2a − (ζ2(ω) + ζ3(ω))(ρ+ ρr)
2 > 0.

5.3 Stochastic Contraction in Wasserstein Sense

We now show the Wasserstein bounds between the distributions behind the trajectories in corresponding

systems. The Wasserstein bounds are simple extensions from the mean-square bounds obtained in the previous

part. The approach is borrowed and inspired by [12], with contraction results established in a mean-square

sense for a class of stochastic systems. The formula of 2-Wasserstein distance is defined in Definition 3.3.

Another assumption required before proceeding is:

Assmpution 9. ([14], Condition (iii)) The diffusion function B(x)(Σ(x, t) + σ(x, t))(Σ(x, t) + σ(x, t))TB(x)T

satisfies:

yTB(x)(Σ(x, t) + σ(x, t))(Σ(x, t) + σ(x, t))TB(x)T y ≥ cyT y, c > 0,

uniformly for all y ∈ Rn, t ∈ [0, T ]. Assumption 9 ensures the existence of a unique invariant distribution [14].

We now state the Wasserstein bound between the distributions behind trajectories in actual system and

reference system first.

Theorem 5.3 Given the actual system described in Equation (4.1) and the reference system described in

(5.1) − (5.4), satisfying Assumptions 1-9, the actual system and the reference system are stochastically

contracting to each other in the sense that, for any pair of solutions x(t), xr(t) with respective laws νt, νrt ,

19



we have:

∀t ∈ [0, τ ], W2(νt, νrt) < (
1

α
)

1
2

(
e−λt

√
ᾱW2(ν0, νr0) +

√
αρa +

…
C1 + C2

2λ

)
. (5.9)

Now we will compute the Wasserstein bound between distributions behind trajectories in the ideal system

and the reference system. Note that the ideal system and the reference system have the same initial condition

distribution (νr0 = ν∗0 ). But the distribution in ideal system ν∗t and in the reference system νrt will be

different evolving with time. Then we have the following 2-Wasserstein bound between the ideal and the

reference system:

W2(ν
∗
t , νrt) ≤

 
1

α

Å…
C2 + C3

2λ
+
»
αζ1(ω)

ã
. (5.10)

The proof is exactly identical to the proof for Theorem 5.3 and is thus omitted. Since the Wasserstein

metric satisfies the triangle inequality [23], then the upper bound of the 2-Wasserstein distance between the

distribution in the ideal and the actual systems is obtained:

W2(ν
∗
t , νt) ≤W2(νt, νrt) +W2(ν

∗
t , νrt)

<

 
1

α

Å…
C1 + C2

2λ
+
√
αρa +

√
ᾱW2(ν0, νr0)e

−λt

ã
+

 
1

α

Å…
C2 + C3

2λ
+
»
αζ1(ω)

ã
=

 
1

α

Å…
C1 + C2

2λ
+

…
C2 + C3

2λ
+

√
α(
»
ζ1(ω) + ρa) +

√
ᾱW2(ν0, νr0)e

−λt

ã
(5.11)
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Chapter 6

Numerical Simulations

Two illustrative examples are provided for the simulations. In the first example, we consider a feedback

linearizable system adapted from [17] and design the controller for safe regulation around the equilibrium

point. The uniform ultimate bounds are shown as discussed in Chapter 5, if the system were to start away

from the equilibrium. In the second example, we refer to the same system and ensure a safe motion planning

with desired trajectory tracking. Specifically, the effect of changing filter bandwidth and adaptation rate for

determining the uniform bounds are shown.

6.1 Feedback Linearizable Systems

We consider the following stochastic system with the structure in Equation (1) which is adapted from Example

6.2 in [17] by with the addition of the noise:

f(x) =

[
−x1(t) + x2(t)

−0.05x32(t)− 3x1(t)− x2(t)

]
, B =

[
0.5

−2

]
, (6.1)

where the state is defined as x(t) = [x1(t) x2(t)]
T . We choose the Riemannian Energy as the candidate for the

Incremental Lyapunov Function V in the nominal system. As shown in [17], the Riemanninan Energy satisfies

the properties of the Incremental Lyapunov Function. Thus, we use the dual metric and the associated

convergence parameter similar to [17]:

W =

[
4.26 −0.92

−0.92 3.73

]
, λ = 1.74 (6.2)

Now suppose the system is under the sinusoidal disturbance, with the drift term h(x, t) = 2 sin(2t) and the

quadratic disturbance σ(x(t)) = 0.01x21(t) in the diffusion term, and the diffusion parameter is set to be

Σ(x(t)) = 0.01x22(t). We choose the initial condition for the system sampled from the Multivariate Normal

Distribution such that ν0 = N ([1 1]T , I) with x0 = [0.354 − 0.463]T ∼ ν0. For the ideal system, we set the

desired state as x∗ = [0 0 0]T . From [17], the desired state is also the equilibrium point of the system

incidentally, which means that the desired control is u∗(t) ≡ 0. We implement the L1 adaptive controller in

(5.1)-(5.4) and obtain simulation results for different values of the adaptation gain Γ and different values of
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the filter bandwidth ω.

First we fix the adaptation rate to be Γ = 4 × 107 and compare the Wasserstein bound between the

distributions behind trajectories in the actual and ideal systems, as well as the Wasserstein bound between

the distributions behind trajectories in the reference and ideal systems with different bandwidths ω. Figure

Figure 6.1: Comparison of 2-Wasserstein Distances between the actual system and the reference system using
different bandwidths: ω = 90 and ω = 500. The dashed lines represent the 2-Wasserstein distance upper
bounds as calculated from Equation (5.8) under different filter bandwidths ω.

6.1 shows the 2-Wasserstein distances and the 2-Wasserstein distance upper bounds between the actual and

reference systems with the corresponding filter bandwidths ω. As seen from Figure 6.1, the injection of the

Wiener process produces an oscillatory behavior between the states. Figure 6.2 shows the 2-Wasserstein

distances and the 2-Wasserstein distance upper bounds between the reference and ideal systems under different

values of ω respectively. From Figure 6.1 and Figure 6.2, we observe that the 2-Wasserstein distance falls

under a smaller distance bound as the bandwidth ω increases. Figure 6.3 shows the 2-Wasserstein bound

between the actual and ideal systems. It is observed that the 2-Wasserstein bound also decreases with the

increase of the filter bandwidth ω. This satisfies our expectation because the increase in the bandwidth allows

more cancellations for the uncertainties from both drift and diffusion parts in the system, and thus provides

a better tracking performance in each of the systems.

Next we fix the filter bandwidth ω and compare the Wasserstein bound between the distributions behind

the trajectories in the actual and the ideal systems, as well as the Wasserstein bound between the distributions

behind the trajectories in the actual and reference systems with different adaptation rates Γ.

Figure 6.4 shows the 2-Wasserstein distances and the 2-Wasserstein upper bounds between the actual and

reference systems, and Figure 6.5 shows the 2-Wasserstein distances and the 2-Wasserstein upper bounds

between the actual and ideal systems under different values of Γ respectively. From Figure 6.4 and Figure

6.5, it is observed that the 2-Wasserstein distances fall under smaller 2-Wasserstein distance upper bounds,

as the adaptation rate Γ increases. This satisfies our expectation because the adaptation rate plays the role

in determining the bounds between the actual and reference systems as well as between the actual and ideal
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Figure 6.2: Comparison of 2-Wasserstein Distances between the reference system and the ideal system using
different bandwidths: ω = 90 and ω = 500. The dashed lines represent the 2-Wasserstein distance upper
bounds as calculated from Equation (5.6) under different filter bandwidths ω. It can be seen that the
2-Wasserstein distance for ω = 90 exceeds the 2-Wasserstein distance upper bound for ω = 500.

Figure 6.3: Comparison of 2-Wasserstein Distances between the actual system and the ideal system using
different bandwidths: ω = 90 and ω = 500. The dashed lines represent the 2-Wasserstein distance upper
bounds as calculated from Equation (5.11) under different filter bandwidths ω.

systems. From Equation (4.31), the adaptation rate is designed such that ρa is decreased with the increased

Γ, and a reduced ρa should yield a smaller Wasserstein upper bound. Note that the increase in the adaptation
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Figure 6.4: Comparison of 2-Wasserstein Distance between the actual system and the reference system using
different adaptation rates: Γ = 40 and Γ = 4× 107. The dashed lines represent the 2-Wasserstein distance
upper bounds as calculated from Equation (5.8) under different adaptation rates Γ. One can observe that the
2-Wasserstein distance for Γ = 40 exceeds the 2-Wasserstein distance upper bound for Γ = 4× 107.

Figure 6.5: Comparison of 2-Wasserstein Distance between the actual system and the ideal system using
different adaptation rates: Γ = 40 and Γ = 4× 107. The dashed lines represent the 2-Wasserstein distance
upper bounds as calculated from Equation (5.11) under different adaptation rates Γ.

rate does not change the 2-Wasserstein bound between the reference and the ideal systems as one can see

from Equation (5.6).
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6.2 Safe Motion Planning: Collision Avoidance

We further observe the performance and robustness benefits using the IES Lyapunov Function with L1-

adaptive control. Now the dynamic equation for our ideal system is:

dx∗(t) = (f(x∗(t)) +Bu∗(t))dt+Σ(x∗(t))dw∗(t)

with the dynamic equation for our actual system given as:

dx(t) =
[
f(x(t)) +B(u(t) + h(x, t))

]
dt+B(Σ(x(t)) + σ(x(t)))dw(t),

where f and B are the same as in Equation (6.1). The diffusion parameter Σ and the disturbance in the

diffusion σ are the same as in Chapter 6.1. The disturbance in the drift term h(x, t) remains the same with

the convergence rate λ = 1, 74. We first plan the ideal trajectory x∗ and the control u∗ using the iterative

Linear Quadratic Gaussian (iLQG) algorithm while avoiding the designed obstacle [26], [27]. It is observed

that using the control u∗ from the planner, the trajectory from the actual system will be likely to hit the

obstacle as shown in Figure 6.6. Due to the existence of noise in our systems, the trajectories shown here are

sample trajectories.

Figure 6.6: Comparison of sample trajectories between the ideal and the actual systems using the pure
feedback from iterative Linear Quadratic Gaussian (iLQG). The planner is designed such that the ideal
trajectories are at least 0.7 unit distance away from the obstacle with 99 percent confidence.

We then use the feedback from L1-adaptive control and obtain 1000 sample trajectories from the actual

system with another 1000 sample trajectories from the ideal system. It is found that not only the system

follows the ideal trajectory closely, but also is able to avoid the collision with obstacles through appropriate

choice of the filter bandwidth ω and the adaptation rate Γ. The results are shown in Figure 6.7.
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Figure 6.7: Comparison of sample trajectories between the ideal and the actual systems using L1-adaptive
control. The grey region represents the overlapping between the trajectories with highest frequency.
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Chapter 7

Conclusion

7.1 Summary

This thesis considers nonlinear stochastic systems with unknown uncertainties and parameters driven by

Wiener processes and uses L1 adaptive control theory to ensure the robustness of the system. The presented

work uses an incremental Lyapunov function with L1 adaptive control. The performance of the closed-loop

system using the proposed L1 adaptive controller is evaluated. The system is shown to provide uniform

bounds for trajectories and corresponding distributions behind trajectories, which act as safety-certificates.

Also, it is shown that the uniform bounds can be adjusted by changing the adaptation rate and the filter

bandwidth. Simulations are provided to illustrate the theoretical results.

7.2 Future Work

It is found that the choice of the diffusion part affects the performance for our trajectory solvers. For example,

if the diffusion part of our stochastic system is too large, then the solution will be numerically unstable by

observation. Future work will include the incorporation of stochastic stability for the nonlinear stochastic

systems to guarantee the performance for the solvers.
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Appendix A

Technical Results

Lemma A.1 Let the state xr(t) of the reference system in Equations (5.1)− (5.4) and the state x(t) of the

real system in Equation (4.1) with control input u(t) in Equation (4.14) satisfy xr(t), x(t) ∈ Ω(ρ, x∗(t)) for all

t ∈ [0, τ ], for some τ > 0. Additionally, let Assumptions 3-5 hold. Then the following inequality is satisfied:

∥ d
dt

(B(x)T
∂V

∂x

T

)∥ ≤ ∆Ψ̇∥xr(t)− x(t)∥+ 2∆Bc4∆ẋ.

Proof. We apply chain rule and triangle inequality to obtain

∥ d
dt

(B(x)T
∂V

∂x

T

)∥ ≤ ∥∂B
∂x

T

ẋ
∂V

∂x

T

∥+ ∥B(x)T
d

dt
(
∂V

∂x

T

)∥

= ∥∂B
∂x

T

ẋ
∂V

∂x

T

∥+ ∥B(x)(
∂

∂x

∂V

∂x
)ẋ∥

= ∥∂B
∂x

T

ẋ
∂V

∂x

T

∥+ ∥B(x)
∂2V

∂x2
ẋ∥.

From Assumptions 3-5 and Lemma A.7 in [17], we have the following result:

∥∂B
∂x

T

ẋ
∂V

∂x

T

∥ ≤ ∆Bx
∆ẋc3∥xr(t)− x(t)∥, ∥B(x)

∂2V

∂x2
ẋ∥ ≤ 2∆Bc4∆ẋ.

Thus, we have:

∥ d
dt

(B(x)T
∂V

∂x

T

)∥ ≤ c3∆Bx
∆ẋ∥xr(t)− x(t)∥+ 2∆Bc4∆ẋ.

= ∆Ψ̇∥xr(t)− x(t)∥+ 2∆Bc4∆ẋ.
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Appendix B

Main Results

The proof for Theorem 5.1 is given below:

Proof. Let a(t) = (x∗(t), xr(t))
T . Using the infinitesimal operator L [22] for the combined system (5.5), we

have:

LV (a) =
∂V

∂t
+
∂V

∂a
Ûf(a, Ûu) + 1

2
tr
(ÛΣ(a(t))T ∂2V

∂a2
ÛΣ(a(t))) (B.1)

≤ V̇ (x∗(t), xr(t)) + C2 + C3,

where

1

2
tr
(ÛΣ(a(t))T ∂2V

∂a2
ÛΣ(a(t)))

=
1

2
tr
(
Σ(x∗)TB(x∗)T

∂2V

∂x∗2
B(x∗)Σ(x∗)

)
+

1

2
tr
(
v(xr, t)

TB(xr)
T ∂

2V

∂x2r
B(xr)v(xr, t)

)
≤ C2 + C3,

given by Assumption 8. Consider the time derivative of V (x∗(t), xr(t)):

V̇ (x∗(t), xr(t)) =
∂V

∂xr

[
f(xr) +B(xr)(uc,r(t)− ηr(t) + h(xr, t))

]
+
∂V

∂x∗
(
f(x∗) +B(x∗)u∗(t)

)
. (B.2)

Since the ideal nominal system admits an IES Lyapunov function, then by Definition 4.4, the following holds:

LF̄ (xr,uc,r)V (x∗, xr) + LF̄ (x∗,u∗)V (x∗, xr) =
∂V

∂xr

(
f(xr) +B(xr)uc,r

)
+
∂V

∂x∗
(
f(x∗) +B(x∗)u∗

)
≤ −2λV (x∗, xr).

Since C2 and C3 are both nonnegative, Equation (B.2) can be rewritten as:

V̇ (x∗, xr) ≤ V̇ (x∗, xr) + C2 + C3

≤ −2λV (x∗, xr) +
∂V

∂xr
B(xr)(h(xr, t)− ηr(t)) + C2 + C3.
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Integrating both sides above, we have:

V (x∗, xr) ≤ e−2λtV (x∗0, x
∗
0) + (C2 + C3)

∫ t

0

e2λ(ν−t)dν +

∫ t

0

e−2λ(t−ν) ∂V

∂xr
B(xr(ν))(h(xr(ν), ν)− η(ν))dν

≤
∫ t

0

e−2λ(t−ν) ∂V

∂xr
B(xr(ν))(h(xr(ν), ν)− ηr(ν))dν +

C2 + C3

2λ
(B.3)

with V (x∗0, x
∗
0) = 0. The right-hand side of the integral term can be expressed as the solution to the following

virtual scalar system [17]:

ẇ(t) = −2λw(t) +
∂V

∂xr
B(xr(t))ξ(t), w(0) = 0, (B.4)

ξ(s) = (1− C(s))L [h(xr, t)]. (B.5)

With Assumptions 2, 4, 5, 8 and Lemma A.6 [17], we have the following:

∥ ∂V
∂xr

B(xr)∥ ≤ ρc3∆B , ∥h(xr, t)∥ ≤ ∆h,

∥ḣ(xr, t)∥ = ∥∂h(xr, t)
∂t

+
∂h(xr, t)

∂xr
ẋr∥

≤ ∆ht +∆hx∆ẋr .

Then the solution of a linear system of the form in Equations (B.4) and (B.5) satisfies the following norm

bound from Lemma A.1 [17]:

∥w(t)∥ ≤ ρc3∆B(
∆h

| 2λ− ω |
+

∆ht +∆hx∆ẋr

2λω
) = αζ1(ω),

where ζ1(ω) is defined in Equation (4.26). Thus, Equation (B.3) can be written as:

V (x∗, xr) ≤ αζ1(ω) +
C2 + C3

2λ
. (B.6)

Taking the expectation under the initial condition a0 = (x∗0, x
∗
0)

T , we have:

Ea0V (x∗, xr) ≤ Ea0 [αζ1(ω) +
C2 + C3

2λ
]

= αζ1(ω) +
C2 + C3

2λ
.

Integrate with respect to p(x∗0):

E
(
V (x∗(t), xr(t))

)
≤ αζ1(ω) +

C2 + C3

2λ
.

By Definition 4.4, we have:

α∥x∗(t)− xr(t)∥2 ≤ V (x∗(t), xr(t)).
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Thus, we finally have:

E(∥x∗(t)− xr(t)∥2) ≤
1

α
E
(
V (x∗(t), xr(t))

)
≤ 1

α

Å
C2 + C3

2λ
+ αζ1(ω)

ã
.

We now state the proof for Theorem 5.2.

Proof. Let y(t) = (x(t), xr(t))
T . Now fix the initial condition y(0). By all assumptions and results from

Theorem 5.1 with Remark 5.1, under the initial condition pair (x0, x
∗
0)

T , we have the following:

∥x(t)− xr(t)∥ = ∥x(t)− x∗(t) + x∗(t)− xr(t)∥

≤ ∥x(t)− x∗(t)∥+ ∥x∗(t)− xr(t)∥

= ρ+ ρr,

which means:

∥x(t)− xr(t)∥2 ≤ (ρ+ ρr)
2 = ρ21.

Using the infinitesimal operator L for the combined system, we have:

LV (y) =
∂V

∂t
+
∂V

∂y
f̄(y, ū) +

1

2
tr
(
Σ̄(y(t))T

∂2V

∂y2
Σ̄(y(t))

)
≤ V̇ (x(t), xr(t)) + C1 + C2, (B.7)

where

1

2
tr
(
Σ̄(y(t))T

∂2V

∂y2
Σ̄(y(t))

)
=

1

2
tr
(
(Σ(x) + σ(x))TB(x)T

∂2V

∂x2
B(x)(Σ(x) + σ(x))

)
+

1

2
tr
(
v(xr, t)

TB(xr)
T ∂

2V

∂x2r
B(xr)v(xr, t)

)
≤ C1 + C2.

Consider the time derivative of V (x(t), xr(t)):

V̇ (x(t), xr(t)) =
∂V

∂xr

[
f(xr) +B(xr)(uc,r(t)− ηr(t) + h(xr, t))

]
+
∂V

∂x

(
f(x) +B(x)(uc(t) + h(x, t)− η̂(t)

)
.

(B.8)

By Definition 4.4 of IES Lyapunov Function, we have:

LF̄ (xr,uc,r)V (x, xr) + LF̄ (x,u)V (x, xr) =
∂V

∂xr

(
f(xr) +B(xr)uc,r(t)

)
+
∂V

∂x

(
f(x) +B(x)u(t)

)
≤ −2λV (x, xr).
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Since C1 and C2 are both nonnegative, Equation (B.8) can be rewritten as:

V̇ (x(t), xr(t)) ≤ V̇ (x(t), xr(t)) + C1 + C2

≤ −2λV (x(t), xr(t)) +
∂V

∂xr
B(xr)(h(xr, t)− ηr(t)) +

∂V

∂x
B(x)(h(x, t)− η̂(t)) + C1 + C2

= −2λV (x, xr) + Ψ(xr)
T (h(xr, t)− ηr(t))−Ψ(x)T (h(x, t)− η̂(t)) + C1 + C2,

where Ψ(xr) := B(xr)
T [ ∂V∂xr

]T and Ψ(x) := −B(x)T [∂V∂x ]
T are introduced for clarity. Define η(s) =

C(s)L [h(x, t)]. By adding and subtracting Ψ(x)T (h(xr, t)− ηr(t) + η(t)) on the right-hand side, we obtain

V̇ (x, xr) ≤ −2λV (x, xr) + (Ψ(xr)−Ψ(x))T (h(xr, t)− ηr(t))

+ Ψ(x)T (h(xr, t)− ηr(t)− h(x, t) + η(t))

+ Ψ(x)T (η̂(t)− η(t)) + C1 + C2.

Since h(xr, t) − ηr(t) = L −1[(1 − C(s))L [h(xr, t)]], h(x, t) − η(t) = L −1[(1 − C(s))L [h(t, x)]], with

η̃(t) = η̂(t)− η(t), we rewrite the equation above as

V̇ (x, xr) ≤ −2λV (x, xr) + Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x) + C1 + C2, (B.9)

where

Φ1(xr, x) := (Ψ(xr)−Ψ(x))TL −1[(1− C(s))L [h(t, xr)]],

Φ2(xr, x) := Ψ(x)TL −1[(1− C(s))L [h(t, xr)− h(t, x)]],

Φ3(xr, x) := Ψ(x)T η̃(t).

Solving the differential equation in Equation (B.9), we obtain:

V (x, xr) ≤ e−2λtV (x0, x
∗
0) + (C1 + C2)

∫ t

0

e−2λ(t−ν)dν +

∫ t

0

e−2λ(t−ν)(Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x))dν

≤ e−2λtV (x0, x
∗
0) +

C1 + C2

2λ
+

∫ t

0

e−2λ(t−ν)(Φ1(xr, x) + Φ2(xr, x) + Φ3(xr, x))dν. (B.10)

Notice that ∥Ψ(xr)−Ψ(x)∥ satisfies the following bound:

∥Ψ(xr)−Ψ(x)∥ ≤ ∥B(xr)
T ∂V

∂xr

T

+B(x)T
∂V

∂x

T

∥.

Adding and subtracting B(x)T ∂V
∂xr

T
from the right hand side of the equation above, we obtain

∥Ψ(xr)−Ψ(x)∥ ≤ ∥(B(xr)−B(x))T
∂V

∂xr

T

+B(x)T (
∂V

∂xr

T

+
∂V

∂x

T

)∥. (B.11)

Since xr(t) ∈ Ω(ρr, x
∗(t)) from Remark 5.1 and x(t) ∈ Ω(ρ, x∗(t)) for all t ∈ [0, τ∗] by assumptions in Theorem

5.2, the following bounds hold for t ∈ [0, τ∗] as a result of Assumption 4:

∥B(xr)−B(x)∥ ≤ ∆Bx∥xr − x∥, ∥B(x)∥ ≤ ∆B .
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By Assumption 8, we have:

∥ ∂V
∂xr

∥ ≤ c3∥xr(t)− x(t)∥, ∥ ∂V
∂xr

+
∂V

∂x
∥ ≤ 2c3∥xr(t)− x(t)∥ ≤ c3∥xr(t)− x(t)∥2 + c3.

Substituting these bounds in Equation (B.10) produces

∥Ψ(xr)−Ψ(x)∥ ≤ (c3∆Bx + c3∆B)∥xr(t)− x(t)∥2 + c3∆B , (B.12)

which holds for all t ∈ [0, τ∗]. Additionally, from Assumption 5 the following inequalities hold:

∥h(xr, t)∥ ≤ ∆h, ∥h(xr, t)− h(x, t)∥ ≤ ∆hx
∥xr(t)− x(t)∥. (B.13)

Since ∥∂h
∂t (t, xr)∥ ≤ ∆ht and ∥∂h

∂x (t, xr)∥ ≤ ∆hx from Assumption 5, and ∥ẋr∥L∞ ≤ ∆ẋr from Lemma A.6

[17], the following inequality is satisfied

∥ḣ(t, xr)∥ = ∥∂h
∂t

+
∂h

∂xr
ẋr∥ ≤ ∆ht

+∆hx
∆ẋr

. (B.14)

Since ∥∂V
∂x ∥ ≤ c3∥xr(t)− x(t)∥ for all t ∈ [0, τ∗], the following holds

∥Ψ(x)∥ = ∥B(x)T
∂V

∂x

T

∥ ≤ ∆Bc3∥xr(t)− x(t)∥ (B.15)

for all t ∈ [0, τ∗]. Using Lemma A.1 from Appendix A, the following result holds for all t ∈ [0, τ∗]

∥Ψ̇(x)∥ ≤ ∆Ψ̇∥xr(t)− x(t)∥+ 2∆Bc4∆ẋ. (B.16)

In order to derive bounds on Equation (B.10), define the following scalar trajectories

z1(t) =

∫ t

0

e−2λ(t−ν)Φ1(x, xr)dν, z2(t) =

∫ t

0

e−2λ(t−ν)Φ2(x, xr)dν.

Then, the functions zi, i ∈ {1, 2}, are the states of the following system

żi(t) = −2λzi(t) + bi(t)ξi(t), zi(0) = z0. (B.17)

ξi(s) = (1− C(s))σi(s), (B.18)

where

b1(t) = Ψ(xr)−Ψ(x), σ1(t) = h(t, xr),

b2(t) = Ψ(x), σ2(t) = h(t, xr)− h(t, x).

In previous discussion, we assumed that:

∥x(t)− xr(t)∥2 ≤ ρ21.

Using Lemma A.1 [17] for the z1(t) system, Lemma A.2 [17] for the z2(t) system, and the bounds in Equation
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(B.11) to (B.15), we have the following inequalities

∥z1(t)∥ ≤ ∥Ψ(xr)−Ψ(x)∥( ∆h

| 2λ− ω |
+

∆ht +∆hx∆ẋr

2λω
)

≤
(
(c3∆Bx + c3∆B)∥xr − x∥2 + c3∆B

)
(

∆h

| 2λ− ω |
+

∆ht
+∆hx

∆ẋr

2λω
)

≤
(
(c3∆Bx

+ c3∆B)ρ
2
1 + c3∆B

)
(

∆h

| 2λ− ω |
+

∆ht
+∆hx

∆ẋr

2λω
)

= ρ21(c3)(∆Bx
+∆B +

∆B

ρ21
)(

∆h

| 2λ− ω |
+

∆ht
+∆hx

∆ẋr

2λω
)

= ρ21ζ2(ω), (B.19)

and

∥z2(t)∥ ≤ ∥h(xr, t)− h(x, t)∥4λ∥Ψ(x)∥+ ∥Ψ̇(x)∥
λω

≤ ∆hx∥xr(t)− x(t)∥4λ∆Bc3∥xr(t)− x(t)∥+ ∥Ψ̇(x)∥
λω

≤ ∆hx
ρ1

4λ∆Bc3ρ1 +∆Ψ̇ρ1 + 2∆Bc4∆ẋ

λω

= ∆hx

4λ∆Bc3 +∆Ψ̇

λω
ρ21 +∆hx

2∆Bc4∆ẋ

λω
ρ1

≤ ∆hx

4λ∆Bc3 +∆Ψ̇

λω
ρ21 +∆hx

∆Bc4∆ẋ

λω
(ρ21 + 1)

= ∆hx

4λ∆Bc3 +∆Ψ̇ + (1 + 1
ρ2
1
)∆Bc4∆ẋ

λω
ρ21

= ρ21ζ3(ω) (B.20)

for all t ∈ [0, τ∗], and where ζ2 and ζ3 are defined in Equations (4.27) and (4.28) respectively. Moreover, it is

easy to show from Equation (A.21) [17] that

∥
∫ t

0

e−2λ(t−ν)Φ3(xr, x)dν∥ ≤ ∆θρ1√
Γ

(B.21)

for all t ∈ [0, τ∗], where ∆θ is defined in Equation (15). Substituting Equation (B.19), (B.20) and (B.21) into

Equation (B.10) we obtain the following bound:

V (x, xr) ≤ e−2λtV (x0, x
∗
0) + ρ21ζ2(ω) + ρ21ζ3(ω) +

∆θρ1√
Γ

+
C1 + C2

2λ

for all t ∈ [0, τ∗]. Note that from Equation (4.31) the adaptation rate Γ is chosen such that

√
Γ >

∆θ(ρ+ ρr)

αρ2a − (ζ2(ω) + ζ3(ω))(ρ+ ρr)2

=
∆θρ1

αρ2a − (ζ2(ω) + ζ3(ω))ρ21
.
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Plugging into the above equation, we have:

V (x, xr) < e−2λtV (x0, x
∗
0) + αρ2a +

C1 + C2

2λ
.

Take the expectation operator under the initial condition y(0) and then integrate with respect to p(x0, x
∗
0);

then we have:

∀t ∈ [0, τ ] E(V (x, xr)) <
1

α

Å
e−2λtE

(
V (x0, x

∗
0)
)
+
C1 + C2

2λ
+ αρ2a

ã
.

By Definition 4.4, we have:

α∥x(t)− xr(t)∥2 ≤ V (x(t), xr(t)).

Thus, we finally have:

∀t ∈ [0, τ ] E(∥x(t)− xr(t)∥2) <
1

α

Å
e−2λtE

(
V (x0, x

∗
0)
)
+
C1 + C2

2λ
+ αρ2a

ã
.

We now show the proof for Theorem 5.3.

Proof. From Theorem 5.2, Equation (5.8) gives:

E(∥x(t)− xr(t)∥2) <
1

α

Å
C1 + C2

2λ
+ E

(
V (x0, x

∗
0)
)
e−2λt + αρ2a

ã
≤ 1

α

Å
C1 + C2

2λ
+ ᾱE

(
∥x∗0 − x0∥2

)
e−2λt + αρ2a

ã
, (B.22)

where the last line uses the property of IES Lyapunov function in Definition 4.4. From Equation (B.22),

the contraction in the 2-Wasserstein distance can be shown just by taking the infimum over all couplings

of ν0 and νr0 , [14]. Define the shorthand r(e) = ∥m − n∥2 for e = (m,n), and let Zt = (x(t), xr(t)). Let

P : [0, T ] × R2n × B(R2n) → R+ denote the transition function of the Markov process Zt, and recall that

P (t, e, B) = P (Zt ∈ B|Z0 = e) almost surely. Now suppose π∗
0 is an optimal coupling between ν0 and νr0 .

Thus, we have:

W 2
2 (ν0, νr0) =

∫
r(e)dπ∗

0(e).

Finally, let Eπ∗
0
denote the expectation with respect to the product measure formed from the measure π∗

0 on
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Z0 and the independent Wiener measure describing Zt. Then, we have:

Eπ∗
0

[
r(Zt)

]
=

∫
R2n

∫
R2n

r(e)dP (t, e0, B)dπ∗
0(e0)

=

∫
R2n

E[r(Zt)|Z0 = e0]dπ
∗
0(e0)

≤
∫
R2n

1

α

Å
C1 + C2

2λ
+ ᾱE

(
∥x∗0 − x0∥2

)
e−2λt + αρ2a

ã
dπ∗

0(x
∗
0, x0)

=
1

α

Å
C1 + C2

2λ
+ αρ2a + ᾱW 2

2 (ν0, νr0)e
−2λt

ã
,

where the inequality in the third line uses the result from Equation (5.8). Referring to [14], define another

measure πt(B) =
∫
P (t, e0, B)dπ∗

0(e0). Thus, we have:

Eπ∗
0

[
r(Zt)

]
=

∫
r(e)dπt(e).

Recall the definition of 2-Wasserstein distance:

W 2
2 (νt, νrt) = inf

∫
r(e)πt(e).

Combining together, we finally have:

W 2
2 (νt, νrt) = inf

∫
r(e)πt(e)

≤
∫
r(e)πt(e)

≤ 1

α

Å
C1 + C2

2λ
+ αρ2a + ᾱW 2

2 (ν0, νr0)e
−2λt

ã
.

Taking the square root on both sides, we have:

W2(νt, νrt) <

 
1

α

…
C1 + C2

2λ
+ αρ2a + ᾱW 2

2 (ν0, νr0)e
−2λt

≤
 

1

α

(…C1 + C2

2λ
+

√
αρa +

√
ᾱW2(ν0, νr0)e

−λt
)
.
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